Citation: LIAO Ming-Jia, QIAO Lei, XIAO Peng, ZHANG Yun-Huai, CHEN Gang-Cai, ZHOU Zhi-En, HE Xiao-Lan, JIE Fang-Fang. Preparation of Silicon Nanowires Array by Wet Chemistry Methods and Photoelectrochemical Hydrogen Generation Performance Analysis[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 439-445. doi: 10.11862/CJIC.2015.043 shu

Preparation of Silicon Nanowires Array by Wet Chemistry Methods and Photoelectrochemical Hydrogen Generation Performance Analysis

  • Received Date: 6 August 2014
    Available Online: 26 October 2014

    Fund Project: 重庆市教委科学技术研究(No.KJ133801)资助项目。 (No.KJ133801)

  • To explore the similarities and differences of hydrogen generation performance of silicon nanowires array (SiNWs array) photocathode prepared by different methods, we adopted two-step metal-catalyzed electroless etching method (TMCEE), one-step metal-catalyzed electroless etching method (OMCEE) and anodic oxidation etching method (AOE) to fabricate silicon nanowires array as a photocathode material for photoelectrochemical hydrogen generation. Comparing with morphology, crystalline, anti-reflection characterization by FESEM, XRD and UV-Vis-IR DRS means, SiNWs array by TMCEE maintained better crystal structure and less surface defects than the samples prepared by the other two methods. Photoelectrochemical tests showed that the performance of SiNWs array by TMCEE was optimal. The photocurrent density value of SiNWs array by TMCEE was 4 times than the one by OMCEE, and 40 times than the one by AOE. The charge transfer resistance of SiNWs array by TMCEE was only 1/3 of SiNWs array by OMCEE, and 1/1 000 of SiNWs array by AOE.
  • 加载中
    1. [1]

      [1] Walter M G, Warren E L, McKone J R, et al. Chem. Rev., 2010,110(11):6446-6473

    2. [2]

      [2] Lewis N S. Science, 2007,315(5813):798-801

    3. [3]

      [3] ZHANG Xiao-Yan(张晓艳), LI Hao-Peng(李浩鹏), CUI Xiao -Li(崔晓莉). Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(11):1903-1907

    4. [4]

      [4] WANG Gui(王桂), WANG YAN-Ji(王延吉), SONG Bao-Jun (宋宝俊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2003,19(9):988-992

    5. [5]

      [5] LI Cao-Long(李曹龙), ZHAO Yu-Ting(赵宇婷), CAO Fei(曹 菲), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29 (12):2535-2542

    6. [6]

      [6] Hagedorn K, Collins S, Maldonado S. J. Electrochem. Soc., 2010,157(11):D588-D592

    7. [7]

      [7] GUO Guo-Long(郭国龙), HUANG Jian-Hua(黄建花). Chinese J. Inorg. Chem.(无机化学学报), 2011,27(2):214-218

    8. [8]

      [8] Lasa H I D, Rosales B S. Advances in Chemical Engineering-Photocatalytic Technologies. Netherlands: Elsevier, 2009:58

    9. [9]

      [9] Chen X, Shen S, Guo L, et al. Chem. Rev., 2010,110(11): 6503-6570

    10. [10]

      [10] LIU Li(刘莉), CAO Yang(曹阳), HE Jun-Hui(贺军辉), et al. Progress in Chemistry(化学进展), 2013,25(2/3):248-259

    11. [11]

      [11] Huang Z, Geyer N, Werner P, et al. Adv. Mater., 2011,23 (2):285-308

    12. [12]

      [12] Song T, Lee S T, Sun B. Nano Energy, 2012,1(5):654-673

    13. [13]

      [13] Wang Y, Wang T, Da P, et al. Adv. Mater., 2013,25(37): 5177-5195

    14. [14]

      [14] Peng K Q, Wang X, Li L, et al. Nano Today, 2013,8(1):75-97

    15. [15]

      [15] Peng K Q, Huang Z P, Zhu J. Adv. Mater., 2004,16(1):73-76

    16. [16]

      [16] Peng K Q, Yan Y J, Gao S P, et al. Adv. Funct. Mater., 2003,13(2):127-132

    17. [17]

      [17] Chen H, Wang H, Zhang X H, et al. Nano Lett., 2010,10(3): 864-868

    18. [18]

      [18] Peng K, Wang X, Lee S T. Appl. Phys. Lett., 2008,92(16): 163103

    19. [19]

      [19] Yuan G, Mitdank R, Mogilatenko A, et al. J. Phys. Chem. C, 2012,116(25):13767-13773

    20. [20]

      [20] Hochbaum A I, Gargas D, Hwang Y J, et al. Nano Lett., 2009,9(10):3550-3554

    21. [21]

      [21] Peng K Q, Wu Y, Fang H, et al. Angew. Chem. Int. Edit., 2005,44(18):2737-2742

    22. [22]

      [22] Oh I, Kye J, Hwang S. Nano Lett., 2012,12(1):298-302

    23. [23]

      [23] Geyer N, Fuhrmann B, Huang Z, et al. J. Phys. Chem. C, 2012,116(24):13446-13451

    24. [24]

      [24] Peng K Q, Hu J J, Yan Y J, et al. Adv. Funct. Mater., 2006, 16(3):387-394

    25. [25]

      [25] Kang Z H, Zhang Z D, Zhang M L, et al. J. Am. Chem. Soc., 2007,129(17): 5326-5327

    26. [26]

      [26] Nava R. J. Phys. D: Appl. Phys., 2010,43(45):455102

    27. [27]

      [27] Kang Z, Tsang C H A, Wong N B, et al. J. Am. Chem. Soc., 2007,129(40):12090-12091

    28. [28]

      [28] Yi J, Lee D H, Park W I. Chem. Mater., 2011,23(17):3902-3906

    29. [29]

      [29] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964,4(5):89-93

    30. [30]

      [30] Shin N, Filler M A. Nano Lett., 2012,12(6):2865-2870

    31. [31]

      [31] Sainiemi L, Jokinen V, Shah A, et al. Adv. Mater., 2011,23 (1):122

    32. [32]

      [32] Garnett E, Yang P. Nano Lett., 2010,10(3):1082-1087

    33. [33]

      [33] Jansen H, Deboer M, Legtenberg R, et al. J. Micromech. Microeng., 1995,5(2):115-120

    34. [34]

      [34] Hwang Y J, Boukai A, Yang P. Nano Lett., 2009,9(1):410-415

    35. [35]

      [35] Peng K Q, Wang X, Wu X L, et al. Nano Lett., 2009,9(11): 3704-3709

    36. [36]

      [36] Wang X, Peng K Q, Pan X J, et al. Angew. Chem. Int. Edit., 2011,50(42):9861-9865

    37. [37]

      [37] Huang Z, Zhong P, Wang C, et al. ACS Appl. Mater. Interfaces, 2013,5(6):1961-1966

    38. [38]

      [38] Yang T, Wang H, Ou X M, et al. Adv. Mater., 2012,24(46): 6199-6203

    39. [39]

      [39] Tran P D, Pramana S S, Kale V S, et al. Chem.-Eur. J., 2012,18(44):13994-13999

    40. [40]

      [40] Peng K Q, Fang H, Hu J J, et al. Chem.-Eur. J., 2006,12 (30):7942-7947

    41. [41]

      [41] Wang K Y, Liu G H, Hoivik N, et al. Chem. Soc. Rev., 2014,43(5):1476-1500

    42. [42]

      [42] HE Meng(何萌), LIU Guo-Zhen(刘国珍), QIU Jie(仇杰), et al. Acta Phys. Sin.(物理学报), 2008,57(2):1236-1240

    43. [43]

      [43] Chieh Y C,Yu C C, Lu F H. Appl. Phys. Lett., 2007,90(3): 032904

    44. [44]

      [44] Joseph M, Lee H Y, Tabata H, et al. J. Appl. Phys., 2000, 88(2):1193-1195

    45. [45]

      [45] Abdi F F, Krol R V D. J. Phys. Chem. C, 2012,116(17): 9398-9404

    46. [46]

      [46] Christesen J D, Zhang X, Pinion C W, et al. Nano Lett., 2012,12(11):6024-6029

    47. [47]

      [47] Warren E L, McKone J R, Atwater H A, et al. Energ Environ. Sci., 2012,5(11):9653-9661

    48. [48]

      [48] Nozik A J. Annu. Rev. Phys. Chem., 1978,29:189-222

    49. [49]

      [49] Lopes T, Andrade L, Ribeiro H A, et al. Int. J. Hydrogen Energ, 2010,35(20):11601-11608

  • 加载中
    1. [1]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    2. [2]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    3. [3]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    4. [4]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    13. [13]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

Metrics
  • PDF Downloads(0)
  • Abstract views(411)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return