Citation: PAN Xu-Chen, TANG Jing, XUE Hai-Rong, GUO Hu, FAN Xiao-Li, ZHU Ze-Tao, HE Jian-Ping. Synthesis and Electrocatalytic Performance of N-Doped Ordered Mesoporous Carbon-Ni Nanocomposite[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 282-290. doi: 10.11862/CJIC.2015.039 shu

Synthesis and Electrocatalytic Performance of N-Doped Ordered Mesoporous Carbon-Ni Nanocomposite

  • Corresponding author: HE Jian-Ping, 
  • Received Date: 12 August 2014
    Available Online: 5 November 2014

    Fund Project: 国家自然科学基金(No.51372115)资助项目 (No.51372115)

  • Highly ordered mesoporous carbon co-modified with Ni-Ncan be prepared via homogeneous phase route as well as dual-phase route, named as Ni-N-OMC-1 and Ni-N-OMC-2 respectively. Triblock copolymer Pluronic F127 were employed as the template agent, urea as the Nprecursor, NiCl2 as the Ni source and resorcinol-formaldehyde resin as the carbon precursor. X-ray diffraction (XRD), Raman, and transmission electron microscope (TEM) showed that nickel particles dispersed in the carbon matrix in forms of metal nickel, in situ catalyzing the graphitization of amorphous carbon. X-ray photoelectron spectroscopy (XPS) revealed that urea existed in four different Nspecies after heat treatment: sp3 nitrogen atoms bonded to carbon atoms, pyridine-like N, sp3 nitrogen atoms bonded to carbon atoms and quaternary-Natoms. The co-modification of nitrogen and nickel changed the physicochemical properties of carbon matrix, thus making for the loading and dispersing of Pt. Pt nanoparticles deposited on Ni-N-OMC-1 nanocompsite showed excellent electrocatalytic activity. The electrochemical active surface area of hydrogen oxidation was 138.53 m2·g-1 and the limiting current density in ORRwas 5.32 mA·cm-2, which indicated higher electrocatalytic ability than that of the commercial 20% Pt/Ccatalysts (4.49 mA·cm-2, 96.98 m2·g-1).
  • 加载中
    1. [1]

      [1] WANG Dao-Jun(王道军), WANG Tao(王涛), ZHOU Jian-Hua(周建华), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(2):305-312

    2. [2]

      [2] Wang J C, Liu Q. J. Phys. Chem. C, 2007,111(20):266-7272

    3. [3]

      [3] Zhao X C, Wang A, Yan J W, et al. Chem. Mater., 2010,22 (19):5463-5473

    4. [4]

      [4] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009,21 (19):4724-4730

    5. [5]

      [5] Li Z L, Liu J H, Xia C G, et al. ACS Catal., 2013,3(11):2440-2448

    6. [6]

      [6] Datta K K R, Balasubramanian V V, Ariga K, et al. Chem. Eur. J., 2011,17(12):3390-3397

    7. [7]

      [7] Wickramaratne N P, Perera V S, Park B W, et al. Chem. Mater., 2013,25(14):2803-2811

    8. [8]

      [8] Lu A H, Li W C, Salabas E L, et al. Chem. Mater., 2006,18 (8):2086-2094

    9. [9]

      [9] Chen Z, Weng D, Sohn H, et al. RSC Adv., 2012,2(5):1755-1758

    10. [10]

      [10] TANG Jing(汤静), WANG Tao(王涛), HE Jian-Ping(何建平), et al. Acta Chim. Sinica(化学学报), 2011,69(15):1751-1759

    11. [11]

      [11] Tang J, Wang T, Pan X C, et al. J. Phys. Chem. C, 2013, 117(33):16896-16906

    12. [12]

      [12] Wang X Q, Liang C D, Dai S. Langmuir, 2008,24(14):7500-7505

    13. [13]

      [13] Meng Y, Gu D, Zhang F Q, et al. Angew. Chem., 2005,117 (43):7215-7221

    14. [14]

      [14] Wei Z Q, Xia T D, Ma J. Mater. Charact., 2007,58(10):1019-1024

    15. [15]

      [15] Jia N Q, Wang Z Y, Yang G F, et al. Electrochem. Commun., 2007,9(2):233-238

    16. [16]

      [16] Shao Y Y, Yin G P, Gao Y Z. J. Power Sources, 2007,171 (2):558-566

    17. [17]

      [17] Yu X W, Ye S Y. J. Power Sources, 2007,172(1):145-154

    18. [18]

      [18] Liu S H, Wu M T, Lai Y H, et al. Mater. Chem., 2011,21 (33):12489-12496

    19. [19]

      [19] Yao J Y, Li L X, Song H H, et al. Carbon, 2009,47(2):436-444

    20. [20]

      [20] Li Q, Yang J P, Feng D, et al. Nano Res., 2010,3(9):632-642

    21. [21]

      [21] Moncoffre N, Hollinger G, Jaffrezic H, et al. Nucl. Instrum. Meth. B, 1985,7-8(1):177-183

    22. [22]

      [22] Wang P F, Takeno T, Adachi K, et al. Appl. Surf. Sci., 2012,258(17):6576-6582

    23. [23]

      [23] Geng D S, Hu Y H, Li Y L, et al. Electrochem. Commun., 2012,22:65-68

    24. [24]

      [24] Delpeux S, Beguin F, Benoit R, et al. Eur. Polym., 1998,34 (7):905-915

    25. [25]

      [25] Lahaye J, Nansé G, Bagreev A, et al. Carbon, 1999,37(4): 585-590

    26. [26]

      [26] Yang D S, Kim C, Song M Y, et al. J. Phys. Chem. C, 2014, 118(30):16694-16702

    27. [27]

      [27] Shao Y Y, Sui J H, Yin G P, et al. Appl. Catal. B: Environ., 2008,79(1):89-99

    28. [28]

      [28] SHI Guo-Yu(史国玉), WANG Zong-Hua(王宗花), XIA Jian-Fei(夏建飞), et al. Acta Chim. Sinica(化学学报), 2013,71 (02):227-233

    29. [29]

      [29] Liu R L, Wu D Q, Feng X L, et al. Angew. Chem., 2010, 122(14):2619-2623

    30. [30]

      [30] Yue B, Ma Y W, Tao H S, et al. J. Mater. Chem., 2008,18 (15):1747-1750

    31. [31]

      [31] Liu H, Guo R X, Liu Y, et al. Surf. Coat. Technol., 2012, 206(15):3350-3359

    32. [32]

      [32] Prieto P, Nistor V, Nouneh K, et al. Appl. Surf. Sci., 2012, 258(22):8807-8813

    33. [33]

      [33] WANG Bo(王博), ZHANG Jian-Min(张建民), LU Yan-Dong (路彦冬), et al. Acta Phys. Sin.(物理学报), 2011,60(1):506-514

    34. [34]

      [34] Zhou J H, He J P, Ji Y J, et al. Electrochim. Acta, 2007,52 (14):4691-4695

  • 加载中
    1. [1]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    6. [6]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    7. [7]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    8. [8]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    9. [9]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    12. [12]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    13. [13]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    16. [16]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

Metrics
  • PDF Downloads(0)
  • Abstract views(419)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return