Citation: PAN Xu-Chen, TANG Jing, XUE Hai-Rong, GUO Hu, FAN Xiao-Li, ZHU Ze-Tao, HE Jian-Ping. Synthesis and Electrocatalytic Performance of N-Doped Ordered Mesoporous Carbon-Ni Nanocomposite[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 282-290. doi: 10.11862/CJIC.2015.039 shu

Synthesis and Electrocatalytic Performance of N-Doped Ordered Mesoporous Carbon-Ni Nanocomposite

  • Corresponding author: HE Jian-Ping, 
  • Received Date: 12 August 2014
    Available Online: 5 November 2014

    Fund Project: 国家自然科学基金(No.51372115)资助项目 (No.51372115)

  • Highly ordered mesoporous carbon co-modified with Ni-Ncan be prepared via homogeneous phase route as well as dual-phase route, named as Ni-N-OMC-1 and Ni-N-OMC-2 respectively. Triblock copolymer Pluronic F127 were employed as the template agent, urea as the Nprecursor, NiCl2 as the Ni source and resorcinol-formaldehyde resin as the carbon precursor. X-ray diffraction (XRD), Raman, and transmission electron microscope (TEM) showed that nickel particles dispersed in the carbon matrix in forms of metal nickel, in situ catalyzing the graphitization of amorphous carbon. X-ray photoelectron spectroscopy (XPS) revealed that urea existed in four different Nspecies after heat treatment: sp3 nitrogen atoms bonded to carbon atoms, pyridine-like N, sp3 nitrogen atoms bonded to carbon atoms and quaternary-Natoms. The co-modification of nitrogen and nickel changed the physicochemical properties of carbon matrix, thus making for the loading and dispersing of Pt. Pt nanoparticles deposited on Ni-N-OMC-1 nanocompsite showed excellent electrocatalytic activity. The electrochemical active surface area of hydrogen oxidation was 138.53 m2·g-1 and the limiting current density in ORRwas 5.32 mA·cm-2, which indicated higher electrocatalytic ability than that of the commercial 20% Pt/Ccatalysts (4.49 mA·cm-2, 96.98 m2·g-1).
  • 加载中
    1. [1]

      [1] WANG Dao-Jun(王道军), WANG Tao(王涛), ZHOU Jian-Hua(周建华), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(2):305-312

    2. [2]

      [2] Wang J C, Liu Q. J. Phys. Chem. C, 2007,111(20):266-7272

    3. [3]

      [3] Zhao X C, Wang A, Yan J W, et al. Chem. Mater., 2010,22 (19):5463-5473

    4. [4]

      [4] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009,21 (19):4724-4730

    5. [5]

      [5] Li Z L, Liu J H, Xia C G, et al. ACS Catal., 2013,3(11):2440-2448

    6. [6]

      [6] Datta K K R, Balasubramanian V V, Ariga K, et al. Chem. Eur. J., 2011,17(12):3390-3397

    7. [7]

      [7] Wickramaratne N P, Perera V S, Park B W, et al. Chem. Mater., 2013,25(14):2803-2811

    8. [8]

      [8] Lu A H, Li W C, Salabas E L, et al. Chem. Mater., 2006,18 (8):2086-2094

    9. [9]

      [9] Chen Z, Weng D, Sohn H, et al. RSC Adv., 2012,2(5):1755-1758

    10. [10]

      [10] TANG Jing(汤静), WANG Tao(王涛), HE Jian-Ping(何建平), et al. Acta Chim. Sinica(化学学报), 2011,69(15):1751-1759

    11. [11]

      [11] Tang J, Wang T, Pan X C, et al. J. Phys. Chem. C, 2013, 117(33):16896-16906

    12. [12]

      [12] Wang X Q, Liang C D, Dai S. Langmuir, 2008,24(14):7500-7505

    13. [13]

      [13] Meng Y, Gu D, Zhang F Q, et al. Angew. Chem., 2005,117 (43):7215-7221

    14. [14]

      [14] Wei Z Q, Xia T D, Ma J. Mater. Charact., 2007,58(10):1019-1024

    15. [15]

      [15] Jia N Q, Wang Z Y, Yang G F, et al. Electrochem. Commun., 2007,9(2):233-238

    16. [16]

      [16] Shao Y Y, Yin G P, Gao Y Z. J. Power Sources, 2007,171 (2):558-566

    17. [17]

      [17] Yu X W, Ye S Y. J. Power Sources, 2007,172(1):145-154

    18. [18]

      [18] Liu S H, Wu M T, Lai Y H, et al. Mater. Chem., 2011,21 (33):12489-12496

    19. [19]

      [19] Yao J Y, Li L X, Song H H, et al. Carbon, 2009,47(2):436-444

    20. [20]

      [20] Li Q, Yang J P, Feng D, et al. Nano Res., 2010,3(9):632-642

    21. [21]

      [21] Moncoffre N, Hollinger G, Jaffrezic H, et al. Nucl. Instrum. Meth. B, 1985,7-8(1):177-183

    22. [22]

      [22] Wang P F, Takeno T, Adachi K, et al. Appl. Surf. Sci., 2012,258(17):6576-6582

    23. [23]

      [23] Geng D S, Hu Y H, Li Y L, et al. Electrochem. Commun., 2012,22:65-68

    24. [24]

      [24] Delpeux S, Beguin F, Benoit R, et al. Eur. Polym., 1998,34 (7):905-915

    25. [25]

      [25] Lahaye J, Nansé G, Bagreev A, et al. Carbon, 1999,37(4): 585-590

    26. [26]

      [26] Yang D S, Kim C, Song M Y, et al. J. Phys. Chem. C, 2014, 118(30):16694-16702

    27. [27]

      [27] Shao Y Y, Sui J H, Yin G P, et al. Appl. Catal. B: Environ., 2008,79(1):89-99

    28. [28]

      [28] SHI Guo-Yu(史国玉), WANG Zong-Hua(王宗花), XIA Jian-Fei(夏建飞), et al. Acta Chim. Sinica(化学学报), 2013,71 (02):227-233

    29. [29]

      [29] Liu R L, Wu D Q, Feng X L, et al. Angew. Chem., 2010, 122(14):2619-2623

    30. [30]

      [30] Yue B, Ma Y W, Tao H S, et al. J. Mater. Chem., 2008,18 (15):1747-1750

    31. [31]

      [31] Liu H, Guo R X, Liu Y, et al. Surf. Coat. Technol., 2012, 206(15):3350-3359

    32. [32]

      [32] Prieto P, Nistor V, Nouneh K, et al. Appl. Surf. Sci., 2012, 258(22):8807-8813

    33. [33]

      [33] WANG Bo(王博), ZHANG Jian-Min(张建民), LU Yan-Dong (路彦冬), et al. Acta Phys. Sin.(物理学报), 2011,60(1):506-514

    34. [34]

      [34] Zhou J H, He J P, Ji Y J, et al. Electrochim. Acta, 2007,52 (14):4691-4695

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    7. [7]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    8. [8]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    9. [9]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    12. [12]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    16. [16]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(0)
  • Abstract views(366)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return