Citation:
HUANG Yi-Cao, ZHAO Zhe-Fei, LI Shi-Xiong, DI Jing, ZHENG Hua-Jun. Preparation and Photocatalytic Properties of Fe2O3/TiO2 Nanotube Arrays[J]. Chinese Journal of Inorganic Chemistry,
;2015, (1): 133-139.
doi:
10.11862/CJIC.2015.037
-
TiO2 nanotube array was prepared by anodic oxidation method on the titanium substrate, and Fe2O3 nanoparticles was successfully deposited on TiO2 nanotube array by a chemical bath method. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectroscopy was applied to characterize their properties and the photoelectrochemical properties and the performance of photocatalytic degradation of methylene blue was investigated. The results indicated that the Fe2O3 modification not only broadened the absorption spectrum of TiO2 nanotube arrays to the visible light region, but also increased the photocurrent. The photocurrent response of Fe2O3 modified TiO2 nanotube arrays was 9 times higher than undecorated TiO2 nanotube arrays. In the photocatalytic reaction, the highest methylene blue degradation rate can reach 80%, which was 30% higher than the bare TiO2 nanotube arrays.
-
-
-
[1]
[1] Fujishima A, Honda K. Nature, 1972,238(5358):37-38
-
[2]
[2] Gong D, Grimes C A, Varghese O K, et al. J. Mater. Res., 2001,16(12):3331-3334
-
[3]
[3] Varghese O K, Gong D, Paulose M, et al. Adv. Mater., 2003, 15(7-8):624-627
-
[4]
[4] Peng X, Cao G Z, Zhou M, et al. Electrochim. Acta, 2012, 76:512-517
-
[5]
[5] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2005,5 (1):191-195
-
[6]
[6] Gong J Y, Pu W H, Yang C Z, et al. Catal. Commun., 2013, 36:89-93
-
[7]
[7] Albu S P, Ghicov A, Macak J M, et al. Nano Lett., 2007,7 (5):1286-1289
-
[8]
[8] Niraula M, Adhikari S, Lee D Y, et al. Chem. Phys. Lett., 2014,593:193-197
-
[9]
[9] Gao X F, Sun W T, Hu Z D, et al. J. Phys. Chem. C, 2009, 113(47):20481-20485
-
[10]
[10] Yodyingyong S, Zhou X Y, Zhang Q F, et al. J. Phys. Chem. C, 2010,114(49):21851-21855
-
[11]
[11] Yip C T, Guo M, Huang H T, et al. Nanoscale, 2012,4(2): 448-450
-
[12]
[12] Xiong F Q, Wei X M, Li C, et al. J. Mater. Chem. A, 2014, 2(13):4510-4513
-
[13]
[13] Ong K G, Varghese O K, Mor G K, et al. Sol. Energ Mater. Sol. Cells, 2007,91(4):250-257
-
[14]
[14] Yu J G, Wang B. Appl. Catal. B: Environ., 2010,94(3/4):295 -302
-
[15]
[15] Xie K P, Sun L, Wang C L, et al. Electrochim. Acta, 2010, 55(24):7211-7218
-
[16]
[16] Shankar K, Bandara J, Paulose M, et al. Nano Lett., 2008,8 (6):1654-1659
-
[17]
[17] Kay A, Cesar I, Gratzel M. J. Am. Chem. Soc., 2006,128(49): 15714-15721
-
[18]
[18] Han W Q, Wen W, Yi D, et al. J. Phys. Chem. C, 2007,111 (39):14339-14342
-
[19]
[19] Beranek R, Macak J M, Gartner M, et al. Electrochim. Acta, 2009,54(9):2640-2646
-
[20]
[20] Tahir A A, Wijayantha K G U, Yarahmadi S S, et al. Chem. Mater., 2009,21(16):3763-3772
-
[1]
-
-
-
[1]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[2]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[3]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[4]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[5]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[8]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[9]
Yucai Zhang , Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006
-
[10]
Ruifeng CHEN , Chao XU , Jianting JIANG , Tianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117
-
[11]
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
-
[12]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[13]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[14]
Hailian Cheng , Shuaiqiang Jia , Chunjun Chen , Haihong Wu , Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023
-
[15]
Jiayi Yang , Jianxiu Hao , Huacong Zhou , Quansheng Liu . “Gorgeous Transformation” of Carbon Dioxide into Cyclic Carbonates: Catalyst Types and Roles. University Chemistry, 2026, 41(2): 178-189. doi: 10.12461/PKU.DXHX202502105
-
[16]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[17]
Ze Luo , Yukun Zhu , Yadan Luo , Guangmin Ren , Yonghong Wang , Hua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166
-
[18]
Xiaolong Li , Shiqi Zhong , Xiangfeng Wei , Zhiqiang Liu , Pan Zhan , Jiehua Liu . Carbon Dioxide: From the Past to the Future. University Chemistry, 2026, 41(2): 242-247. doi: 10.12461/PKU.DXHX202503013
-
[19]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[20]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(681)
- HTML views(78)
Login In
DownLoad: