Citation: XIAO Zhen-Kun, WU Lei, MI Rao, FANG Qing, SONG Xiao-Lan, LU Xiao-Ying, WENG Jie. Effect of Carbon Nanotubes on the Mechanical Properties of Carbon Nanotubes/Hydroxyapatite Composites[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 114-120. doi: 10.11862/CJIC.2015.036 shu

Effect of Carbon Nanotubes on the Mechanical Properties of Carbon Nanotubes/Hydroxyapatite Composites

  • Corresponding author: LU Xiao-Ying, 
  • Received Date: 23 July 2014
    Available Online: 30 October 2014

    Fund Project: 973项目(No.2012CB933602) (No.2012CB933602)国家自然科学基金(No.51172188) (No.51172188)西南交通大学国创项目(No.201410613005) (No.201410613005)工程实践项目(No.ZD201314014)资助 (No.ZD201314014)

  • In order to overcome the brittleness of hydroxyapatite (HA) bioceramics, it is suggested to be an efficient approach to fabricate carbon nanotubes (CNTs)/HA composites by compounding CNTs with HA for the clinic applications in bone tissue engineering. CNTs/HA composites had been fabricated by three different methods, that was CNTs dispersing into HA with the addition of surfactant, CNTs coprecipitating with HA via an acid-base reaction, and HA growing on CNTs by a mineralization approach. The results showed that CNTs/HA composites exhibited a certain plastic deformation under the compress load condition and the compressive mechanical properties had been increased owing to the existence of CNTs in these composites. For the uniform distribution and network array of CNTs with slightly damaged structure in HA matrix and good interfacial bonding between CNTs and HA, CNTs/HA composites prepared by CNTs dispersing into HA with the addition of surfactant have the best compressive mechanical properties. However, CNTs/HA composites prepared by CNTs coprecipitating with HA via an acid-base reaction have the worst compressive mechanical properties for the uneven distribution and aggregating array of CNTs with greatly damaged structure in HA matrix.
  • 加载中
    1. [1]

      [1] Yuan H, Li Y, De Bruijn J D, et al. Biomaterials, 2000,21 (12):1283-1290

    2. [2]

      [2] Chang B S, Hong K S, Youn H J, et al. Biomaterials, 2000, 21(12):1291-1298

    3. [3]

      [3] Sous M, Bareille R, Rouais F, et al. Biomaterials, 1998,19 (23):2147-2153

    4. [4]

      [4] LIU Cui-Lian(刘翠莲), TANG Rui-Kang(唐睿康). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(1):1-9

    5. [5]

      [5] Ruys A J, Wei M, Sorrell C C, et al. Biomaterials, 1995,16 (5):409-415

    6. [6]

      [6] Wang J, Shaw L L. Biomaterials, 2009,30(34):6565-6572

    7. [7]

      [7] Silva V V, Domingues R Z, Lameiras F S. Compos. Sci. Technol., 2001,61(2):301-310

    8. [8]

      [8] Iijima S. Nature, 1991,354(6348):56-58

    9. [9]

      [9] Odom T W, Huang J L, Kim P, et al. Nature, 1998,391(6662): 62-64

    10. [10]

      [10] Inoue S, Ichikuni N, Suzuki T, et al. J. Phys. Chem. B, 1998,102(24):4689-4692

    11. [11]

      [11] Che R, Peng L M, Duan X F, et al. Adv. Mater., 2004,16(5): 401-405

    12. [12]

      [12] XU Hua-Ming(徐化明), LI Dan(李聃), LIANG Ji(梁吉). Chinese J. Inorg. Chem.(无机化学学报), 2005,21(9):1353-1356

    13. [13]

      [13] Jiang Q, Qu M Z, Zhou G M, et al. Mater. Lett., 2002,57(4): 988-991

    14. [14]

      [14] Chiu H Y, Hung P, Postma H W C, et al. Nano Lett., 2008, 8(12):4342-4346

    15. [15]

      [15] LI Hao-Peng(李浩鹏), ZHANG Xiao-Yan(张晓艳), CUI Xiao-Li(崔晓莉). Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(11):1935-1938

    16. [16]

      [16] Yakobson B, Avouris P. Mechanical Properties of Carbon Nanotubes. Berlin: Springer Berlin Heidelberg, 2001:287-327

    17. [17]

      [17] Curtin W A, Sheldon B W. Mater. Today, 2004,7(11):44-49

    18. [18]

      [18] SUN Kang-Ning(孙康宁), LI Ai-Min(李爱民), YIN Yan-Sheng(尹衍升), et al. Chinese J. Biomed. Eng.(中国生物医 学工程学报), 2004,23(6):573-578

    19. [19]

      [19] LU Zhi-Hua(卢志华), SUN Kang-Ning(孙康宁), ZHAO Zhong-Fan(赵中帆). J. Chinese Ceram. Soc.(硅酸盐学报), 2007,35(2):212-217

    20. [20]

      [20] PU Hui(蒲辉), LI Jun(李钧), LI Xiao-Li(李晓莉), et al. J. Clin. Rehabil. Tissue Eng. Research(中国组织工程研究 与临床康复), 2011,15(38):7109-7112

    21. [21]

      [21] Osorio A G, dos Santos L A, Bergmann C P. Rev. Adv. Mater. Sci., 2011,27:58-63

    22. [22]

      [22] Wang J, Kou H, Liu X J. Ceram. Int., 2007,33(5):719-722

    23. [23]

      [23] An J W, You D H, Lim D S. Wear, 2003,255(1):677-681

    24. [24]

      [24] Hamon M A, Hu H, Bhowmik P, et al. Chem. Phys. Lett., 2001,347(1):8-12

    25. [25]

      [25] Rosca I D, Watari F, Uo M, et al. Carbon, 2005,43(15): 3124-3131

    26. [26]

      [26] LU Xiao-Ying(卢晓英). Thesis for the Masterate of Sichuan University(四川大学硕士论文). 2003.

    27. [27]

      [27] ZHAO Bao-Lin(赵宝林), LUO Min(罗民), MA Hong-Shun (马洪顺). Beijing Biomed. Eng.(北京生物医学工程), 2004, 23(2):143-146

    28. [28]

      [28] Jenkins R, Snyder R L. Introduction to X-ray Powder Diffra-ctometry. New York: John Wiley & Sons, 1996:47-94

    29. [29]

      [29] MU Bai-Chun(穆白春). Strength of Ceramic Materials(陶瓷 材料的强韧化). Beijing: Metallurgical Industry Press, 2002: 35-48

    30. [30]

      [30] Datsyuk V, Kalyva M, Papagelis K, et al. Carbon, 2008,46 (6):833-840

    31. [31]

      [31] Meng Y H, Tang C Y, Tsui C P. J. Mater. Sci. Mater. Med., 2008,19(1):75-81

    32. [32]

      [32] QIU Tian(邱添), HUANG Jing-Jing(黄静静), ZHANG Miao (张苗), et al. J. Inorg. Mater.(无机材料学报), 2012,28(1): 91-96

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    19. [19]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(0)
  • Abstract views(195)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return