Citation: LIU Qin-Fu, ZUO Xiao-Chao, ZHANG Shi-Long, ZHANG Shuai, JI Jing-Chao. Synthesis and Possible Modeling of Kaolinite-Stearic Acid Intercalation Compound[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 7-14. doi: 10.11862/CJIC.2015.035 shu

Synthesis and Possible Modeling of Kaolinite-Stearic Acid Intercalation Compound

  • Corresponding author: LIU Qin-Fu, 
  • Received Date: 29 July 2014
    Available Online: 10 October 2014

    Fund Project: 国家自然科学基金(No.51034006)重点项目 (No.51034006)

  • Kaolinite-stearic acid intercalation compound was synthesized via intercalation and displacement using kaolinite from Zhangjiakou as raw material. The new intercalation compounds were characterized by X-ray diffraction(XRD), Fourier transform infrared spectracopy(FTIR),Thermal Gravity Analysis(TG/DTG) and Transmission Electron Microscope(TEM). Experimental results show that the basal spacing of kaolinite-stearic acid intercalation compound is 4.05~4.37 nm and the intercalationrate of the product reaches to 86.9%. The intercalation time and the pHvalue of the solution have influence on the basal spacing and intercalationrate.The methoxy groups which were grafted with iner surface OH groups and the stearic acid molecules are inside the interlayers of the kaolinite.The TG/DTG Analyses were to conform that the activity of kaolinite hydroxyl increased after methanol modified. Some sheets of the kaolinite-stearic acid compound have rolled up from the edge and formed nanoscrolls which is similar with halloysite. The possible intercalation mechanism is analyzed. A model was provided by structural computation in theory. The results show that the reason about the changed spacings of the compounds in different conditions is explained by the model.
  • 加载中
    1. [1]

      [1] CHENG Hong-Fei(程宏飞), LIU Qin-Fu(刘钦甫), WANG Lu-Jun(王陆军), et al. Geol. Chem. Miner.(化工矿产地质), 2008,2:125-128

    2. [2]

      [2] ZHANG Yin-Min(张印民), LIU Qin-Fu(刘钦甫), HE Jun-Kai(赫军凯), et al. Chinese Non-Met. Min. Ind. Hera.(中国非 金属矿工业导刊), 2010(02):11-14

    3. [3]

      [3] LIAO Li-Bing(廖立兵). J. Chinese Ceram. Soc.(硅酸盐学报), 2011(9):1523-1530

    4. [4]

      [4] Frost R L, Kristof J, Horvath E, et al. J. Colloid Interface Sci., 2002,251(2):350-359

    5. [5]

      [5] Frost R L, Kristof J, Paroz G N, et al. J. Colloid Interface Sci., 1998,208(2):478-486

    6. [6]

      [6] XIA Hua(夏华), WANG Fang-Zheng(王方正), LI Xu-Qiang (李学强). J. Harbin Inst. Technol.(哈尔滨工业大学学 报), 2006(1):126-129

    7. [7]

      [7] Olejnik S, Aylmore L A G, Posner A M, et al. J. Phys. Chem., 1968,72(1):241-249

    8. [8]

      [8] ZHANG Yin-Min(张印民), LIU Qin-Fu(刘钦甫), WU Ze-Guang(伍泽广), et al. J. Chinese Ceram. Soc.(硅酸盐学报), 2011(10):1637-1643

    9. [9]

      [9] CHEN Jie-Yu(陈洁渝), YAN Chun-Jie(严春杰), WAN Wei-Min(万为敏), et al. J. Chinese Ceram. Soc.(硅酸盐学报), 2010(09):1837-1842

    10. [10]

      [10] Frost R L, Kristof J, Horvath E, et al. Spectrochim. Acta Part A, 2000,56(9):1711-1729

    11. [11]

      [11] Frost R L, Kloprogge J T, Kristof J, et al. Spectrochim. Acta Part A, 2001(57):603-609

    12. [12]

      [12] Komori Y, Sugahara Y, Kuroda K. Appl. Clay Sci., 1999 (15):241-252

    13. [13]

      [13] Matusik J, Kapyta Z. Appl. Clay Sci., 2013(83/84):433-440

    14. [14]

      [14] Matusik J, Kapyta Z, Olejniczak Z. Appl. Clay Sci., 2013 (83/84):426-432

    15. [15]

      [15] LIU Qin-Fu(刘钦甫), CHENG Hong-Fei(程宏飞), DU Xiao-Man(杜小满), et al. Acta Minalogica Sinica(矿物学报), 2010(2):153-159

    16. [16]

      [16] XI Guo-Xi(席国喜), LU Kuang(路宽). Bull. Chinese Ceram Soc.(硅酸盐通报), 2011,30(5):1155-1159

    17. [17]

      [17] WANG Lin-Jiang(王林江), XIE Xiang-Li(谢襄漓), CHEN Nan-Chun(陈南春), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2010,26(5):853-859

    18. [18]

      [18] Komori Y, Enoto H, Takenawa R, et al. Langmuir, 2000(16): 5506-5508

    19. [19]

      [19] Matusik J, Scholtzova E, Tunega D. Clays Clay Miner., 2012,3(60):227-239

    20. [20]

      [20] LONG Hai(龙海), ZHENG Yu-Ying(郑玉婴), GUO Yong(郭 勇), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(6):1210-1216

    21. [21]

      [21] Kuroda Y, Ito K, Itabshi K, et al. Langmuir, 2011,27(5): 2028-2035

    22. [22]

      [22] Smith M B, March J. Translated by LI Yan-Mei(李艳梅), March's Advanced Organic Chemistry(March高等有机化 学). Beijing: Chemical Industry Press, 2007:47-49

    23. [23]

      [23] CHEN Yan-Cui(陈彦翠), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江). Chinese Non-Met. Mine.(非金属矿), 2008(03):18-21

    24. [24]

      [24] Brindley G, Moll W. Am. Mineral., 1965(50):1355-1370

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    11. [11]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(0)
  • Abstract views(613)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return