Citation: XU Feng-Qin, HU Xiao-Fei, CHENG Fang-Yi, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Preparation of Porous Carbon-Supported Ni Nanoparticles for Catalytic Hydrogen Generation from Ammonia Borane Hydrolysis[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 103-108. doi: 10.11862/CJIC.2015.032 shu

Preparation of Porous Carbon-Supported Ni Nanoparticles for Catalytic Hydrogen Generation from Ammonia Borane Hydrolysis

  • Corresponding author: CHENG Fang-Yi, 
  • Received Date: 22 July 2014
    Available Online: 3 October 2014

    Fund Project: 863项目(No.2012AA051503) (No.2012AA051503)国家自然科学基金(No.51101089,51371100,51271094) (No.51101089,51371100,51271094)973项目(No.2011CB631301) (No.2011CB631301)

  • Honeycomb-like hierarchical porous carbon was prepared and employed as substrate to support nickel nanparticles via an impregnation-chemical reduction method. The synthesized carbon-supported nickel (denoted as Ni/C) was used as catalysts for hydrogen generation from hydrolysis of ammonia borane (AB). Results of XRD, BET, SEM, Raman, and TEM measurements showed that the synthesized carbon possessed high specific surface area of 737 m2·g-1 and partially graphited structure; the supported amorphous Ni nanoparticles had an average particle size of 10 nm and were uniformly dispersed on the porous carbon substrate. The synthesized Ni/C exhibited high catalytic activity towards the hydrolysis of AB. At hydrolysis temperature of 298 K, Ni/C with 30wt% Ni loading was the most active, resulting in a high hydrogen release rate of 1304.67 mL·min-1·g-1 and a low activation energy of 29.1 kJ·mol-1. In addition, the Ni/C catalyst could be repeatedly utilized with respectable activity reservation for several times. The results indicate that Ni/C is a promising low-cost catalyst for hydrolytic dehydrogenation of AB.
  • 加载中
    1. [1]

      [1] Liu C, Fan Y Y, Liu M, et al. Science, 1999,286:1127-1129

    2. [2]

      [2] TANG Xiao-Ming(唐晓鸣), LIU Ying-Liang(刘应亮). Chinese J. Inorg. Chem.(无机化学学报), 2001,17(2):161-167

    3. [3]

      [3] Yang L, Su J, Luo W, et al. Int. J. Hydrogen Energy, 2014, 39:3360-3370

    4. [4]

      [4] Zhang T R, Yang X J, Yang S Q, et al. Phys. Chem. Chem. Phys., 2011,13:18592-18599

    5. [5]

      [5] Yang X J, Cheng F Y, Liang J, et al. Int. J. Hydrogen Energy, 2009,34:8785-8791

    6. [6]

      [6] WU Guo-Tao(吴国涛), CHEN Wei-Dong(陈维东), XIONG Zhi-Tao(熊智涛). Chinese Journal of Nature(自然杂志), 2011,33(1):27-34

    7. [7]

      [7] ZOU Shao-Shuang(邹少爽), TAO Zhan-Liang(陶占良), CHEN Jun(陈军). Acta Chim. Sinica(化学学报), 2011,69(18):2117-2122

    8. [8]

      [8] TAO Zhan-Liang (陶占良), PENG Bo(彭博), LIANG Jing(梁 静), et al. Materials China(中国材料进展), 2009,28(Z1):26-40

    9. [9]

      [9] Graham T W, Tsang C W, Chen X H, et al. Angew. Chem. Int. Ed., 2010,49:8708-8711

    10. [10]

      [10] HUANG Ren-Zhong(黄仁忠), YANG Wen-Jing(杨文静), LIU Liu(刘柳), et al. Journal of Shenyang Normal University: Natural Science(沈阳师范大学学报:自然科学版), 2011, 29(3):395-398

    11. [11]

      [11] Cao N, Su J, Luo W, et al. Int. J. Hydrogen Energy, 2014, 39:426-435

    12. [12]

      [12] Yang X J, Cheng F Y, Tao Z L, et al. J. Power Sources, 2011,196:2785-2789

    13. [13]

      [13] Luo W, Campbell P G, Zakharov L N, et al. J. Am. Chem. Soc., 2011,133:19326-19329

    14. [14]

      [14] Chandra M, XU Q. J. Power Sources, 2007,168:135-142

    15. [15]

      [15] Zhao J Z, Ma H, Chen J. Int. J. Hydrogen Energy, 2007,30: 4711-4716

    16. [16]

      [16] Umegaki T, Yan J M, Zhang X B, et al. Int. J. Hydrogen Energy, 2009,34:3816-3822

    17. [17]

      [17] Li P Z, Aijaz A, Xu Q. Angew. Chem. Int. Ed., 2012,51: 6753-6756

    18. [18]

      [18] Du J, Cheng F Y, Si M, et al. Int. J. Hydrogen Energy, 2013,38:5768-5774

    19. [19]

      [19] Cao N, Luo W, Cheng G Z. Int. J. Hydrogen Energy, 2013, 38:11964-11972

    20. [20]

      [20] Yang X J, Cheng F Y, Liang J, et al. Int. J. Hydrogen Energy, 2011,36:1984-1990

    21. [21]

      [21] Yan J M, Zhang X B, Han S, et al. Inorg. Chem., 2009,48: 7389-7393

    22. [22]

      [22] Umegaki T, Yan J M, Zhang X B, et al. J. Power Sources, 2009,191:209-216

    23. [23]

      [23] WU Xue-Yan(吴雪艳), WANG Kai-Xue(王开学), CHEN Jie-Sheng(陈接胜). Prog. Chem.(化学进展), 2012,24(Z1): 262-274

    24. [24]

      [24] CHENG Ji-Peng(程继鹏), ZHAN Xiao-Bin(张孝彬). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(5):967-970

    25. [25]

      [25] Qiu F Y, Li L, Liu G, et al. Int. J. Hydrogen Energy, 2013, 38:3041-3049

    26. [26]

      [26] Zhao J Z, Cheng F Y, Yi C H, et al. J. Mater. Chem., 2009, 19:4108-4116

    27. [27]

      [27] Yamada H, Nakamura H, Nakahara F, et al. J. Phys. Chem. C, 2007,111:227-233

    28. [28]

      [28] Kruk M, Jaroniec M. Chem. Mater., 2001,13:3169-3183

    29. [29]

      [29] Tuinstra F, Koenig J. J. Chem. Phys., 1970,53:1126-1130

    30. [30]

      [30] Ozaya O, Ingerb E, Aktasc N, et al. Int. J. Hydrogen Energy, 2011,36:8209-8216

  • 加载中
    1. [1]

      Chenyang WANGYiyan BAIWei ZHANGZhaorong LIUYuchun WANG . Performance of photo-assisted copper oxide catalyzed hydrolysis of ammonia borane to produce hydrogen. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 97-110. doi: 10.11862/CJIC.20250116

    2. [2]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    3. [3]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    4. [4]

      Xinnan XIEBoyu ZHANGJianxun YANGYi ZHONGYounis OsamaJianxiao YANGXinchun YANG . Ultrafine platinum clusters achieved by metal-organic framework derived cobalt nanoparticle/porous carbon: Remarkable catalytic performance in dehydrogenation of ammonia borane. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2095-2102. doi: 10.11862/CJIC.20250025

    5. [5]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    6. [6]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    9. [9]

      Lixing LUShaoxian LIUJian XUZiqi JINJiongjia CHENGJiyang ZHAOFubo WANGHaiying WANG . [FeFe]-hydrogenase-containing compound and its photocatalytic H2-production performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2584-2590. doi: 10.11862/CJIC.20250200

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    13. [13]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    14. [14]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 100023-0. doi: 10.3866/PKU.WHXB202311032

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    20. [20]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

Metrics
  • PDF Downloads(0)
  • Abstract views(945)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return