Citation: WANG Yan-En, CAO Shuang, LIU Shu-Jing, FENG Tao, LIU Ning, TANG Ya-Wen, LU Tian-Hong. Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 23-28. doi: 10.11862/CJIC.2015.024
-
The Pd-Fe/C catalyst was prepared by the complexing reduction method using NH4Cl as the complex agent at the low temperature. The high alloy Pd-Fe/C catalyst Pd and Fe could be prepared at low temperature due to the complex formation by NH4Cl and Pd, which leads to a negative shift for the reduction potential of PdCl2, making the reduction potential of PdCl2 closer to that of FeCl3. The XPS results show that the alloying of Pd with Fe could affect the binding energies of Pd and increase the content of Pd0 in the catalyst. Thus, the electrocatalytic activity of the Pd-Fe/C catalyst obtained for the oxygen reduction is higher than that of the Pd/C catalyst prepared with the same method. Furthermore, this Pd-Fe/C catalyst has no electrocatalytic activity for the methanol oxidation.
-
-
[1]
[1] Appleby A J, Lloyd A C, Dyer C K. Sci. Am., 1999,281(1): 72-77
-
[2]
[2] Zhang L, Zhang J J, Wilkinson D P, et al. J. Power Sources, 2006,156(2):171-182
-
[3]
[3] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal. B: Environ., 2005,56(1-2):9-35
-
[4]
[4] Demirci U B. J. Power Sources, 2007,173(1):11-18
-
[5]
[5] Wang B. J. Power Sources, 2005,152(1):1-15
-
[6]
[6] LI Xu-Guang(李旭光), XING Wei(邢巍), LU Tian-Hong(陆 天虹), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2003,7(24):1246-1250
-
[7]
[7] Shao M H, Sasaki K, Adzic R R. J. Am. Chem. Soc., 2006, 128(11):3526-3527
-
[8]
[8] Song S Q, Wang Y, Tsiakaras P, et al. Appl. Catal. B: Environ., 2008,78(3/4):381-387
-
[9]
[9] Jin Y X, Ma C N, Shi M Q, et al. Int. J. Electrochem. Sci., 2012,7(4):3399-3408
-
[10]
[10] Wang H, Ji S, Wang W, et al. Int. J. Electrochem. Sci., 2012,7(4):3390-3398
-
[11]
[11] Trinh Q T, Yang J H, Lee J Y, et al. J. Catal., 2012,291:26-35
-
[12]
[12] Pires F I, Villullas H M. Int. J. Hydrogen Energy, 2012,37 (22):17052-17059
-
[13]
[13] Li A Z, Zhao X, Hou Y N, et al. Appl. Catal. B: Environ., 2012,111:628-635
-
[14]
[14] Zhang Z Y, More K L, Sun K, et al. Chem. Mater., 2011,23 (6):1570-1577
-
[15]
[15] Yin S B, Cai M, Wang C X, et al. Energy Environ. Sci., 2011,4(2):558-563
-
[16]
[16] Neergat M, Gunasekar V, Rahul R. J. Electroanal. Chem., 2011,658(1/2):25-32
-
[17]
[17] Alexeyeva N, Sarapuu A, Tammeveski K, et al. Electrochim. Acta, 2011,56(19):6702-6708
-
[18]
[18] Yang J H, Zhou W J, Cheng C H, et al. Appl. Mat. Interfaces, 2010,2(1):119-126
-
[19]
[19] Wang W, Wang R F, Ji S, et al. J. Power Sources, 2010,195 (11):3498-3503
-
[20]
[20] Tang Y W, Cao S, Chen Y, et al. Appl. Surf. Sci., 2010,256 (13):4196-4200
-
[21]
[21] Yeh Y C, Chen H M, Liu R S, et al. Chem. Mater., 2009,21 (17):4030-4036
-
[22]
[22] Tarasevich M R, Zhutaeva G V, Bogdanovskaya V A, et al. Electrochim. Acta, 2007,52(15):5108-5118
-
[23]
[23] Xu J, Lü X S, Li J D, et al. J. Hazard. Mater., 2012,225:36-45
-
[24]
[24] Pan Y, Zhang F, Wu K, et al. Int. J. Hydrogen Energy, 2012,37(4):2993-3000
-
[25]
[25] Wang C, Markovic N M, Stamenkovic V R. ACS Catal., 2012,2(5):891-898
-
[26]
[26] Vondrova M, Burgess C M, Bocarsly A B. Chem. Mater., 2007,19(9):2203-2212
-
[27]
[27] Wang R, Liao S, Fu Z, et al. Electrochem. Commun., 2008, 10(4):523-526
-
[28]
[28] Li W Z, Haldar P. Electrochem. Commun., 2009,11(6):1195-1198
-
[29]
[29] Radmilovic V, Gasteiger H A, Ross P N. J. Catal., 1995, 154(1):98-106
-
[30]
[30] Antolini E, Cardellini F. J. Alloys Compd., 2001,315(1/2): 118-122
-
[31]
[31] Zhang L, Lee K, Zhang J. Electrochim. Acta, 2007,52(9): 3088-3094
-
[32]
[32] Wang W, Zheng D, Du C, et al. J. Power Sources, 2007,167 (2):243-249
-
[33]
[33] Tang Y, Zhang L, Wang Y, et al. J. Power Sources, 2006, 162(1):124-131
-
[34]
[34] Tominaka S, Mommab T, Osaka T. Electrochim. Acta, 2008, 53(14):4679-4686
-
[35]
[35] Dumbuya K, Denecke R, Steinruck H P. Appl. Catal. A: Gen., 2008,348(2):209-213
-
[36]
[36] Zhang L, Tang Y, Bao J, et al. J. Power Sources, 2006,162 (1):177-179
-
[37]
[37] Persson K, Ersson A, Jansson K, et al. J. Catal., 2005,231 (1):139-150
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[3]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[4]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[5]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[6]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[7]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[8]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[11]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
-
[14]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[15]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[16]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[17]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[18]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[19]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[20]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(345)
- HTML views(52)