Citation: WANG Yan-En, CAO Shuang, LIU Shu-Jing, FENG Tao, LIU Ning, TANG Ya-Wen, LU Tian-Hong. Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 23-28. doi: 10.11862/CJIC.2015.024 shu

Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction

  • Corresponding author: CAO Shuang, 
  • Received Date: 12 May 2014
    Available Online: 17 October 2014

    Fund Project: 国家自然科学基金项目(No.21073094,21273116,61171015) (No.21073094,21273116,61171015)江苏高校优势学科建设工程(No.10KJB150007)资助项目 (No.10KJB150007)

  • The Pd-Fe/C catalyst was prepared by the complexing reduction method using NH4Cl as the complex agent at the low temperature. The high alloy Pd-Fe/C catalyst Pd and Fe could be prepared at low temperature due to the complex formation by NH4Cl and Pd, which leads to a negative shift for the reduction potential of PdCl2, making the reduction potential of PdCl2 closer to that of FeCl3. The XPS results show that the alloying of Pd with Fe could affect the binding energies of Pd and increase the content of Pd0 in the catalyst. Thus, the electrocatalytic activity of the Pd-Fe/C catalyst obtained for the oxygen reduction is higher than that of the Pd/C catalyst prepared with the same method. Furthermore, this Pd-Fe/C catalyst has no electrocatalytic activity for the methanol oxidation.
  • 加载中
    1. [1]

      [1] Appleby A J, Lloyd A C, Dyer C K. Sci. Am., 1999,281(1): 72-77

    2. [2]

      [2] Zhang L, Zhang J J, Wilkinson D P, et al. J. Power Sources, 2006,156(2):171-182

    3. [3]

      [3] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal. B: Environ., 2005,56(1-2):9-35

    4. [4]

      [4] Demirci U B. J. Power Sources, 2007,173(1):11-18

    5. [5]

      [5] Wang B. J. Power Sources, 2005,152(1):1-15

    6. [6]

      [6] LI Xu-Guang(李旭光), XING Wei(邢巍), LU Tian-Hong(陆 天虹), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2003,7(24):1246-1250

    7. [7]

      [7] Shao M H, Sasaki K, Adzic R R. J. Am. Chem. Soc., 2006, 128(11):3526-3527

    8. [8]

      [8] Song S Q, Wang Y, Tsiakaras P, et al. Appl. Catal. B: Environ., 2008,78(3/4):381-387

    9. [9]

      [9] Jin Y X, Ma C N, Shi M Q, et al. Int. J. Electrochem. Sci., 2012,7(4):3399-3408

    10. [10]

      [10] Wang H, Ji S, Wang W, et al. Int. J. Electrochem. Sci., 2012,7(4):3390-3398

    11. [11]

      [11] Trinh Q T, Yang J H, Lee J Y, et al. J. Catal., 2012,291:26-35

    12. [12]

      [12] Pires F I, Villullas H M. Int. J. Hydrogen Energy, 2012,37 (22):17052-17059

    13. [13]

      [13] Li A Z, Zhao X, Hou Y N, et al. Appl. Catal. B: Environ., 2012,111:628-635

    14. [14]

      [14] Zhang Z Y, More K L, Sun K, et al. Chem. Mater., 2011,23 (6):1570-1577

    15. [15]

      [15] Yin S B, Cai M, Wang C X, et al. Energy Environ. Sci., 2011,4(2):558-563

    16. [16]

      [16] Neergat M, Gunasekar V, Rahul R. J. Electroanal. Chem., 2011,658(1/2):25-32

    17. [17]

      [17] Alexeyeva N, Sarapuu A, Tammeveski K, et al. Electrochim. Acta, 2011,56(19):6702-6708

    18. [18]

      [18] Yang J H, Zhou W J, Cheng C H, et al. Appl. Mat. Interfaces, 2010,2(1):119-126

    19. [19]

      [19] Wang W, Wang R F, Ji S, et al. J. Power Sources, 2010,195 (11):3498-3503

    20. [20]

      [20] Tang Y W, Cao S, Chen Y, et al. Appl. Surf. Sci., 2010,256 (13):4196-4200

    21. [21]

      [21] Yeh Y C, Chen H M, Liu R S, et al. Chem. Mater., 2009,21 (17):4030-4036

    22. [22]

      [22] Tarasevich M R, Zhutaeva G V, Bogdanovskaya V A, et al. Electrochim. Acta, 2007,52(15):5108-5118

    23. [23]

      [23] Xu J, Lü X S, Li J D, et al. J. Hazard. Mater., 2012,225:36-45

    24. [24]

      [24] Pan Y, Zhang F, Wu K, et al. Int. J. Hydrogen Energy, 2012,37(4):2993-3000

    25. [25]

      [25] Wang C, Markovic N M, Stamenkovic V R. ACS Catal., 2012,2(5):891-898

    26. [26]

      [26] Vondrova M, Burgess C M, Bocarsly A B. Chem. Mater., 2007,19(9):2203-2212

    27. [27]

      [27] Wang R, Liao S, Fu Z, et al. Electrochem. Commun., 2008, 10(4):523-526

    28. [28]

      [28] Li W Z, Haldar P. Electrochem. Commun., 2009,11(6):1195-1198

    29. [29]

      [29] Radmilovic V, Gasteiger H A, Ross P N. J. Catal., 1995, 154(1):98-106

    30. [30]

      [30] Antolini E, Cardellini F. J. Alloys Compd., 2001,315(1/2): 118-122

    31. [31]

      [31] Zhang L, Lee K, Zhang J. Electrochim. Acta, 2007,52(9): 3088-3094

    32. [32]

      [32] Wang W, Zheng D, Du C, et al. J. Power Sources, 2007,167 (2):243-249

    33. [33]

      [33] Tang Y, Zhang L, Wang Y, et al. J. Power Sources, 2006, 162(1):124-131

    34. [34]

      [34] Tominaka S, Mommab T, Osaka T. Electrochim. Acta, 2008, 53(14):4679-4686

    35. [35]

      [35] Dumbuya K, Denecke R, Steinruck H P. Appl. Catal. A: Gen., 2008,348(2):209-213

    36. [36]

      [36] Zhang L, Tang Y, Bao J, et al. J. Power Sources, 2006,162 (1):177-179

    37. [37]

      [37] Persson K, Ersson A, Jansson K, et al. J. Catal., 2005,231 (1):139-150

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(0)
  • Abstract views(414)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return