Citation: WANG Yan-En, CAO Shuang, LIU Shu-Jing, FENG Tao, LIU Ning, TANG Ya-Wen, LU Tian-Hong. Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 23-28. doi: 10.11862/CJIC.2015.024 shu

Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction

  • Corresponding author: CAO Shuang, 
  • Received Date: 12 May 2014
    Available Online: 17 October 2014

    Fund Project: 国家自然科学基金项目(No.21073094,21273116,61171015) (No.21073094,21273116,61171015)江苏高校优势学科建设工程(No.10KJB150007)资助项目 (No.10KJB150007)

  • The Pd-Fe/C catalyst was prepared by the complexing reduction method using NH4Cl as the complex agent at the low temperature. The high alloy Pd-Fe/C catalyst Pd and Fe could be prepared at low temperature due to the complex formation by NH4Cl and Pd, which leads to a negative shift for the reduction potential of PdCl2, making the reduction potential of PdCl2 closer to that of FeCl3. The XPS results show that the alloying of Pd with Fe could affect the binding energies of Pd and increase the content of Pd0 in the catalyst. Thus, the electrocatalytic activity of the Pd-Fe/C catalyst obtained for the oxygen reduction is higher than that of the Pd/C catalyst prepared with the same method. Furthermore, this Pd-Fe/C catalyst has no electrocatalytic activity for the methanol oxidation.
  • 加载中
    1. [1]

      [1] Appleby A J, Lloyd A C, Dyer C K. Sci. Am., 1999,281(1): 72-77

    2. [2]

      [2] Zhang L, Zhang J J, Wilkinson D P, et al. J. Power Sources, 2006,156(2):171-182

    3. [3]

      [3] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal. B: Environ., 2005,56(1-2):9-35

    4. [4]

      [4] Demirci U B. J. Power Sources, 2007,173(1):11-18

    5. [5]

      [5] Wang B. J. Power Sources, 2005,152(1):1-15

    6. [6]

      [6] LI Xu-Guang(李旭光), XING Wei(邢巍), LU Tian-Hong(陆 天虹), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2003,7(24):1246-1250

    7. [7]

      [7] Shao M H, Sasaki K, Adzic R R. J. Am. Chem. Soc., 2006, 128(11):3526-3527

    8. [8]

      [8] Song S Q, Wang Y, Tsiakaras P, et al. Appl. Catal. B: Environ., 2008,78(3/4):381-387

    9. [9]

      [9] Jin Y X, Ma C N, Shi M Q, et al. Int. J. Electrochem. Sci., 2012,7(4):3399-3408

    10. [10]

      [10] Wang H, Ji S, Wang W, et al. Int. J. Electrochem. Sci., 2012,7(4):3390-3398

    11. [11]

      [11] Trinh Q T, Yang J H, Lee J Y, et al. J. Catal., 2012,291:26-35

    12. [12]

      [12] Pires F I, Villullas H M. Int. J. Hydrogen Energy, 2012,37 (22):17052-17059

    13. [13]

      [13] Li A Z, Zhao X, Hou Y N, et al. Appl. Catal. B: Environ., 2012,111:628-635

    14. [14]

      [14] Zhang Z Y, More K L, Sun K, et al. Chem. Mater., 2011,23 (6):1570-1577

    15. [15]

      [15] Yin S B, Cai M, Wang C X, et al. Energy Environ. Sci., 2011,4(2):558-563

    16. [16]

      [16] Neergat M, Gunasekar V, Rahul R. J. Electroanal. Chem., 2011,658(1/2):25-32

    17. [17]

      [17] Alexeyeva N, Sarapuu A, Tammeveski K, et al. Electrochim. Acta, 2011,56(19):6702-6708

    18. [18]

      [18] Yang J H, Zhou W J, Cheng C H, et al. Appl. Mat. Interfaces, 2010,2(1):119-126

    19. [19]

      [19] Wang W, Wang R F, Ji S, et al. J. Power Sources, 2010,195 (11):3498-3503

    20. [20]

      [20] Tang Y W, Cao S, Chen Y, et al. Appl. Surf. Sci., 2010,256 (13):4196-4200

    21. [21]

      [21] Yeh Y C, Chen H M, Liu R S, et al. Chem. Mater., 2009,21 (17):4030-4036

    22. [22]

      [22] Tarasevich M R, Zhutaeva G V, Bogdanovskaya V A, et al. Electrochim. Acta, 2007,52(15):5108-5118

    23. [23]

      [23] Xu J, Lü X S, Li J D, et al. J. Hazard. Mater., 2012,225:36-45

    24. [24]

      [24] Pan Y, Zhang F, Wu K, et al. Int. J. Hydrogen Energy, 2012,37(4):2993-3000

    25. [25]

      [25] Wang C, Markovic N M, Stamenkovic V R. ACS Catal., 2012,2(5):891-898

    26. [26]

      [26] Vondrova M, Burgess C M, Bocarsly A B. Chem. Mater., 2007,19(9):2203-2212

    27. [27]

      [27] Wang R, Liao S, Fu Z, et al. Electrochem. Commun., 2008, 10(4):523-526

    28. [28]

      [28] Li W Z, Haldar P. Electrochem. Commun., 2009,11(6):1195-1198

    29. [29]

      [29] Radmilovic V, Gasteiger H A, Ross P N. J. Catal., 1995, 154(1):98-106

    30. [30]

      [30] Antolini E, Cardellini F. J. Alloys Compd., 2001,315(1/2): 118-122

    31. [31]

      [31] Zhang L, Lee K, Zhang J. Electrochim. Acta, 2007,52(9): 3088-3094

    32. [32]

      [32] Wang W, Zheng D, Du C, et al. J. Power Sources, 2007,167 (2):243-249

    33. [33]

      [33] Tang Y, Zhang L, Wang Y, et al. J. Power Sources, 2006, 162(1):124-131

    34. [34]

      [34] Tominaka S, Mommab T, Osaka T. Electrochim. Acta, 2008, 53(14):4679-4686

    35. [35]

      [35] Dumbuya K, Denecke R, Steinruck H P. Appl. Catal. A: Gen., 2008,348(2):209-213

    36. [36]

      [36] Zhang L, Tang Y, Bao J, et al. J. Power Sources, 2006,162 (1):177-179

    37. [37]

      [37] Persson K, Ersson A, Jansson K, et al. J. Catal., 2005,231 (1):139-150

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    20. [20]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return