Citation: LIANG Jian, ZHANG Cai-Xia, DONG Hai-Liang, HE Xia, SHEN Yan-Qiang, XU Bing-She. Ag/ZnO/ZnSe Heteronanostructure: Synthesis and Photocatalytic Properties with Visible Light Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 260-266. doi: 10.11862/CJIC.2015.016 shu

Ag/ZnO/ZnSe Heteronanostructure: Synthesis and Photocatalytic Properties with Visible Light Irradiation

  • Corresponding author: LIANG Jian, 
  • Received Date: 15 July 2014
    Available Online: 27 October 2014

    Fund Project: 国家自然科学基金(No.51002102) (No.51002102)山西省自然科学基金(No.2012011046-7)资助项目 (No.2012011046-7)

  • Ag/ZnO/ZnSe heterostructure nanocatalysts were successfully synthesized via twice immersion method by use of as-prepared Ag nanowire. The structure and morphology of Ag/ZnO/ZnSe heterostructure are investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS) field emission transmission electron microscopy (FETEM). It is proved that Ag/ZnO/ZnSe heterostructure was consisted with vermicular Ag/ZnOheterostructure coated by ZnSe nanoparticles. Compared with pure Ag nanowire, pure ZnOnanosphere and Ag/ZnOheterostructure, the results showed that the photocatalytic activity of the Ag/ZnO/ZnSe heterostructure was higher than other samples. The enhanced photocatalytic activity could be attributed to the formation of heterostructure, which might improve the separation of photogenerated electron-hole pairs, and decrease recombination probability.
  • 加载中
    1. [1]

      [1] Kim Y S, Kang S H. Nanotechnology, 2011,22(27):275707

    2. [2]

      [2] Chung Y A, Chang Y C, Lu M Y, et al. J. Electrochem. Soc., 2009,156(5):F75-F79

    3. [3]

      [3] WANG Xin-Juan(王新娟), XIAO Yang(肖洋), XU Fei(徐斐), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(8): 1821-1826

    4. [4]

      [4] Bae J, Han J B, Zhang X M. J. Phys. Chem. C, 2009,113: 10379-10383

    5. [5]

      [5] Ye C H, Bando Y, Shen G Z, et al. J. Phys. Chem. B, 2006, 110:15146-15151

    6. [6]

      [6] Xu X L, Duan X, Yi Z G, et al. Catal. Commun., 2010,12(3): 169-172

    7. [7]

      [7] Luo Q P, Lei B X, Yu X Y, et al. J. Mater. Chem., 2011,21 (24):8709-8714

    8. [8]

      [8] Zhang Q F, Dandeneau C S, Zhou X Y, et al. Adv. Mater., 2009,21(41):4087-4108

    9. [9]

      [9] Wang J W, Mao B D, Gole G L, et al. Nanoscale, 2010,2: 2257-2261

    10. [10]

      [10] Song C X, Lin Y S, Wang D B, et al. Mater. Lett., 2010,64: 1595-1597

    11. [11]

      [11] Wang G Y, Zhang W X, Lian H L, et al. Appl. Catal. A: General, 2003,239(1):1-8

    12. [12]

      [12] Gu C D, Cheng C, Huang H Y, et al. Cryst. Growth Des., 2009,9(7):3278-3285

    13. [13]

      [13] Wu W, Zhang S F, Xiao X H, et al. ACS Appl. Mater. Interfaces, 2012,4:3602-3609

    14. [14]

      [14] Hameed A, Gombac V, Montini T, et al. Chem. Phys. Lett., 2009,472(4/5/6):212-216

    15. [15]

      [15] Shen F Y, Que W X, He Y C, et al. ACS Appl. Mater. Interfaces, 2012,4:4087-4092

    16. [16]

      [16] Wang Z Y, Huang B B, Dai Y, et al. J. Phys. Chem. C, 2009,113:4612-4617

    17. [17]

      [17] Khanchandani S, Kundu S, Patra A, et al. J. Phys. Chem. C, 2012,116:23653-23662

    18. [18]

      [18] Goswami B, Pal S, Ghosh C, et al. J. Phys. Chem. C, 2009, 113:6439-6443

    19. [19]

      [19] Zapien J A, Liu Y K, Shan Y Y, et al. Appl. Phys. Lett., 2007,90(21):213114-213117

    20. [20]

      [20] Wang K, Chen J, Zhou W, et al. Adv. Mater., 2008,20:3248-3253

    21. [21]

      [21] Chen L L, Zhang W X, Feng C, et al. Ind. Eng. Chem. Res., 2012,51(11): 4208-4214

    22. [22]

      [22] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995,95:69-96

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    3. [3]

      Irshad Ahmad Yifei Zhang Ayman Al-Qattan S. AlFaify Gao Li . Unlocking the engineering of solar-driven ZnO composites: From fundaments to sustainable and eco-friendly chemical energy. Chinese Journal of Structural Chemistry, 2025, 44(11): 100700-100700. doi: 10.1016/j.cjsc.2025.100700

    4. [4]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    5. [5]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    10. [10]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    11. [11]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    17. [17]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    18. [18]

      Shujun NingZhiyuan WeiZhening ChenTianmin WuLu Zhang . Curvature and defect formation synergistically promote the photocatalysis of ZnO slabs. Chinese Chemical Letters, 2025, 36(7): 111057-. doi: 10.1016/j.cclet.2025.111057

    19. [19]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    20. [20]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

Metrics
  • PDF Downloads(0)
  • Abstract views(553)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return