Citation: LI Mei SUN, HAN Wei, WANG Shan-Shan, ZHANG Mi-Lin, YAN Yong-De, ZHANG Meng. Electrochemical Preparation of Ho-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 177-182. doi: 10.11862/CJIC.2015.006 shu

Electrochemical Preparation of Ho-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts

  • Corresponding author: HAN Wei, 
  • Received Date: 30 June 2014
    Available Online: 8 October 2014

    Fund Project: 国家自然科学基金(No.21271054,21173060,51104050) (No.21271054,21173060,51104050)国家自然基金重大研究计划(No.91326113,91226201)以及中央高校研究基金(HEUCF201403001)资助项目. (No.91326113,91226201)以及中央高校研究基金(HEUCF201403001)

  • The electrochemical behavior of Ho(Ⅲ) in LiCl-KCl eutectic melts and the alloying mechanism of Ho-Ni alloys were investigated by cyclic voltammetry, square wave voltammetry and open circuit chronopotentiometry. On an inert Welectrode, the electroreduction of Ho(Ⅲ) proceeds in a one-step process involving three electrons at -2.06 V (vs Ag/AgCl). Compared with the cyclic voltammograms on an inert Welectrode, three reduction peaks are observed which indicates the under-potential deposition of Ho(Ⅲ) on the reactive Ni electrode due to the formation of Ho-Ni intermetallic compounds. Three alloy samples were produced by potentiostatic electrolysis at various potentials and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), respectively. The results confirm the three alloy samples of Ho2Ni17, HoNi5 and HoNi2 intermetallic compounds, respectively.
  • 加载中
    1. [1]

      [1] Yaropolov Y L, Andreenko A S, Nikitin S A, et al. J. Alloys Compd., 2011,509:S830-834

    2. [2]

      [2] Haraguchi T, Kogachi M. Mater. Sci. Eng. A, 2002,329-331: 402-407

    3. [3]

      [3] GUO Xin(郭欣), LI Shu-Cun(李书存), WANG Li(王丽) et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(9):2019- 2024

    4. [4]

      [4] Domnguez-Crespo M A, Torres-Huerta A M, Brachetti-Sibaja B, et al. Int. J. Hydrogen Energy, 2011,36:135-151

    5. [5]

      [5] Li P, Li Q Q, Jin T, et al. Mater. Sci. Eng. A, 2014,603:84- 92

    6. [6]

      [6] Konishi H, Nohira T, Ito Y. Electrochim. Acta, 2003,48:563- 568

    7. [7]

      [7] Kobayashi S, Nohira T, Kobayashi K, et al. J. Electrochem. Soc., 2012,159(12):E193-197

    8. [8]

      [8] Kobayashi S, Kobayashi K, Nohira T, et al. J. Electrochem. Soc., 2011,158(12):E142-146

    9. [9]

      [9] Yasuda K, Kobayashi S, Nohira T, et al. Electrochim. Acta, 2013,106:293-300

    10. [10]

      [10] Yasuda K, Kobayashi S, Nohira T, et al. Electrochim. Acta, 2013,92:349-355

    11. [11]

      [11] Chamelot P, Massot L, Hamel C, et al. J. Nucl. Mater., 2007,360:64-74

    12. [12]

      [12] Nohira T, Kambara H, Amezawa K, et al. J. Electrochem. Soc., 2005,152(4):C183-189

    13. [13]

      [13] Iida T, Nohira T, Ito Y, et al. Electrochim. Acta, 2001,46: 2537-2544

    14. [14]

      [14] Iida T, Nohira T, Ito Y, et al. Electrochim. Acta, 2003,48: 1531-1536

    15. [15]

      [15] SU Yu-Zhi(苏育志), YANG Qi-Qin(杨绮琴), LIU Guan-Kun (刘冠昆). J. Rare Earths, 2000,18(1): 34-38

    16. [16]

      [16] Sangster J, Pelton A D. J. Phase Equilib., 1991,12:203

    17. [17]

      [17] Bard A J, Faulkner L R. Electrochemical Methods: Fundamental and Applications. New York: John Wiley & Sons, Inc, 2001:291

    18. [18]

      [18] Castrillejo Y, Fernández P, Bermejo M R, et al. Electrochim. Acta, 2009,54:6212-6222

    19. [19]

      [19] Strycker J D, Westbroek P, Temmerman E. Electrochem. Commun., 2002,4:41-46

    20. [20]

      [20] Konishi H, Nishikiori T, Nohira T. Electrochim. Acta, 2003,48:1403-1408

    21. [21]

      [21] Zhou H Y, Ou X L, Zhong X P. J. Alloys Compd., 1991,117 (1):102-106

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    5. [5]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    8. [8]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    9. [9]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    18. [18]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    19. [19]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    20. [20]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

Metrics
  • PDF Downloads(0)
  • Abstract views(605)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return