Citation: WU Guang-Li, ZHAO Xiao-Hua, LI Meng, LI Zhen-Zhen, LI Cai-Zhu, LOU Xiang-Dong. Controllable Synthesis of Hierarchical Structure ZnO Photocatalysts with Different Morphologies via Sol-Gel Assisted Hydrothermal Method[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 61-68. doi: 10.11862/CJIC.2015.004 shu

Controllable Synthesis of Hierarchical Structure ZnO Photocatalysts with Different Morphologies via Sol-Gel Assisted Hydrothermal Method

  • Corresponding author: LOU Xiang-Dong, 
  • Received Date: 17 June 2014
    Available Online: 26 September 2014

    Fund Project: 国家自然科学基金(No.21073055)资助项目 (No.21073055)

  • Hierarchical structure ZnO samples with different morphologies were synthesized by sol-gel assisted hydrothermal method, using Zn(NO3)2·6H2O, citric acid and NaOH as raw materials. Nanosheets flower-like ZnO, nanorods flower-like ZnO and spind-like ZnO microstructures could be synthesized only by controlling the time of hydrothermal reaction. The as-prepared samples were characterized by XRD, SEM, UV-Vis, DRS, photoluminescence (PL) and low temperature nitrogen adsorption-desorption. The formation mechanism of different morphologies of ZnO hierarchical structures was proposed. The photocatalytic activities of the samples were evaluated by the degradation of Reactive Blue 14 (KGL) under UV irradiation. The results demonstrated that different morphologies of ZnO samples all showed good photocatalytic performance, with the degradation degree of KGL exceeding 78% after 120 min. But the sample prepared at 120 ℃ for 4 h exhibited superior photocatalytic activity to other ZnO samples, and the degradation rate of KGL can reach 99%. It might be attributed to the morphology, larger specific surface area, more oxygen surface defect and surface polarity.
  • 加载中
    1. [1]

      [1] Gupta V K, Ali I, Saleh T A, et al. RSC Adv., 2012,2(16): 6380-6388

    2. [2]

      [2] Lang X J, Chen X D, Zhao J C. Chem. Soc. Rev., 2014,43 (1):473-486

    3. [3]

      [3] Lu Y C, Wang L L, Wang D J, et al. Mater. Chem. Phys., 2011,129(1):281-287

    4. [4]

      [4] Xu L P, Hu Y L, Pelligra C, et al. Chem. Mater., 2009,21 (13):2875-2885

    5. [5]

      [5] Liu Y, Kang Z H, Chen Z H, et al. Cryst. Growth Des., 2009, 9(7):3222-3227

    6. [6]

      [6] Lai Y L, Meng M, Yu Y F. Appl. Catal. B: Environ., 2010,100(3):491-501

    7. [7]

      [7] WU Zhen-Yu(吴振玉), LI Feng-Jie(李奉杰), LI Cun(李村), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(10): 2091-2098

    8. [8]

      [8] CAI Feng-Shi(蔡锋石), WANG Jing(王菁), SUN Yue(孙悦), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(6): 1116-1120

    9. [9]

      [9] Sun Y, Fuge G M, Fox N A, et al. Adv. Mater., 2005,17(20): 2477-2481

    10. [10]

      [10] Sun J H, Dong S Y, Wang Y K, et al. J. Hazard. Mater., 2009,172(2/3):1520-1526

    11. [11]

      [11] Sun Y G, Hu J Q, Wang N, et al. New J. Chem., 2010,34 (4):732-737

    12. [12]

      [12] Zhang H, Yang D R, Li S Z, et al. Mater. Lett., 2005,59 (13):1696-1700

    13. [13]

      [13] Zhao X H, Li M, Lou X D. Adv. Powder Technol., 2014,25 (1):372-378

    14. [14]

      [14] Zhao X H, Lou F J, Li M, et al. Ceram. Int., 2014,40(4): 5507-5514

    15. [15]

      [15] Chen M, Wang Z H, Han D M, et al. Sens. Actuators B: Chem., 2011,157(2):565-574

    16. [16]

      [16] Umar A, Chauhan M S, Chauhan S, et al. J. Colloid Interface Sci., 2011,363(2):521-528

    17. [17]

      [17] Wahab R, Mishra A, Yun S I, et al. Biomass Bioenerg, 2012,39:227-236

    18. [18]

      [18] KAN Bao-Tao(阚保涛), WANG Xin(汪鑫), YE Chun-Li (叶春丽), et al. Chinese J. Lumin.(发光学报), 2012,32(12): 1205-1209

    19. [19]

      [19] Stankovi A, Stojanovi Z, Veselinovi L, et al. Mater. Sci. Eng. B, 2012,177(13):1038-1045

    20. [20]

      [20] Yousefi R, Kamaluddin B. Appl. Surf. Sci., 2009,255(23): 9376-9380

    21. [21]

      [21] Muthirulan P, Devi C N, Sundaram M M. Ceram. Int., 2014, 40(4):5945-5957

    22. [22]

      [22] Wang H H, Xie C S, Zhang W, et al. J. Hazard. Mater., 2007,141(3):645-652

  • 加载中
    1. [1]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    2. [2]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    3. [3]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    7. [7]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    9. [9]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    10. [10]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    14. [14]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(823)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return