Citation: ZHAO Xin-Hong, WEN Juan-Juan, CHEN Jing, ZHAO Jiang-Bo, QI Yong-Dong, LI Gui-Xian. Ionothermal Synthesis of Hierarchical Structured CuAPO-5 Molecular Sieve[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 29-36. doi: 10.11862/CJIC.2015.003 shu

Ionothermal Synthesis of Hierarchical Structured CuAPO-5 Molecular Sieve

  • Corresponding author: ZHAO Xin-Hong, 
  • Received Date: 12 May 2014
    Available Online: 6 October 2014

    Fund Project: 国家自然科学基金(No.21306072) (No.21306072)红柳青年(No.201113)资助项目 (No.201113)

  • Hierarchical structured CuAPO-5 molecular sieve has been ionothermally synthesized by microwave irradiation and using eutectic mixture based on succinic acid, choline chloride and tetraethyl ammonium bromide as solvent and template. The effects of the ratio of P2O5/Al2O3, HF/Al2O3 and CuO/Al2O3, aluminum and copper sources on the crystallization of CuAPO-5 were systematically investigated. The resulting CuAPO-5 molecular sieve was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron microscopy (TEM), and N2 physical adsorption-desorption, respectively. SEM analysis reveals that CuAPO-5 molecular sieve with hexagonal nanometer-disc morphology can be synthesized under specific synthesis conditions. N2 physisorption, SEM and TEM characterizations show that the resultant material is one kind of hierarchical structured aluminophosphate molecular sieve possesses both micropore and mesopore.
  • 加载中
    1. [1]

      [1] XU Ru-Ren(徐如人), PANG Wen-Qin(庞文琴), YU Ji-Hong (于吉红), et al. Chemistry-Zeolites and Porous Materials(分 子筛与多孔材料化学). Beijing: Science Press, 2004:15-19

    2. [2]

      [2] Chen L H, Tang Y, Xiao F S, et al. J. Mater. Chem., 2012, 22:17381-17403

    3. [3]

      [3] Hua Z L, Zhou J, Shi J L. Chem. Commun., 2011,47(38): 10536-10547

    4. [4]

      [4] Naydenov V, Tosheva L, Antzutkin O N, et al. Microporous Mesoporous Mater., 2005,78(2/3):181-188

    5. [5]

      [5] Egeblad K, Kustova M, Klitgaard S K, et al. Microporous Mesoporous Mater., 2007,101(1/2):214-223

    6. [6]

      [6] Yang X M, Lu T L, Chen C, et al. Microporous Mesoporous Mater., 2011,144(1/2/3):176-182

    7. [7]

      [7] Choi M, Srivastava R, Ryoo R. Chem. Commun., 2006(42): 4380-4382

    8. [8]

      [8] Kim J, Bhattacharjee S, Ahn W S, et al. New J. Chem., 2010,34(12):2971-2978

    9. [9]

      [9] Danilina N, Krumeich F, van Bokhoven J A. J. Catal., 2010, 272(1):37-43

    10. [10]

      [10] Fan Y, Xiao H, Shi G, et al. J. Catal., 2012,285(1):251-259

    11. [11]

      [11] Alicia M S, Manuel S S, Pedro M G, et al. Microporous Mesoporous Mater., 2010,131(1/2/3):331-341

    12. [12]

      [12] Kanchana U, Sujitra W. Microporous Mesoporous Mater., 2010,135(1/2/3):116-123

    13. [13]

      [13] Zhao X H, Chen J, Sun Z P, et al. Microporous Mesoporous Mater., 2013,182:8-15

    14. [14]

      [14] Dang T T H, Zubowa H L, Bentrup U, et al. Microporous Mesoporous Mater., 2009,123:209-220

    15. [15]

      [15] HE Ye(何月), DONG Mei(董梅), Li Jun-Fen(李俊汾), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2010,26(5):1305-1310

    16. [16]

      [16] Wan Y, Williams C D, Duke C V A, et al. J. Mater. Chem., 2000,10:2857-2862

    17. [17]

      [17] Zhao X H, Wang H, Li G X, et al. Microporous Mesoporous Mater., 2012,151:56-63

    18. [18]

      [18] Wragg D S, Slawin A M Z, Morris R E. Solid State Sci., 2009, 11(2):411-416

    19. [19]

      [19] Oliver S, Kuperman A, Ozin G A. Angew. Chem., Int. Ed. Engl., 1998,37(1/2):46-62

    20. [20]

      [20] Hentit H, Bachari K, Ouali M S, et al. J. Mol. Catal. A: Chem., 2007,275(1/2):158-166

    21. [21]

      [21] Tian D Y, Yan W F, Cao X J, et al. Chem. Mater., 2008,20: 2160-2164

    22. [22]

      [22] Tian D Y, Yan W F, Wang Z X, et al. Cryst. Growth Des., 2009,9(3):1411-1414

    23. [23]

      [23] Danilina N, Castelanelli S A, Troussard E, et al. Catal. Today, 2011,168(1):80-85

    24. [24]

      [24] Murthy K, Kulkarni S J, Masthan S K. Microporous Mesoporous Mater., 2001,43(2):201-209

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    3. [3]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    4. [4]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yi RUTao MENGZhaoteng XUEDongsen MAO . Synergistic catalysis of Al distribution and pore structure in ZSM-5 zeolite for bioethanol-to-propylene. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 247-262. doi: 10.11862/CJIC.20250255

    7. [7]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    8. [8]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    9. [9]

      Yao XieShuangjun LiChao ChenSiyu FanYing TaoQitao Zhang . Ionic polarization engineering of polymeric carbon nitride toward efficient H2O2 photosynthesis. Acta Physico-Chimica Sinica, 2026, 42(5): 100183-0. doi: 10.1016/j.actphy.2025.100183

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Qiaorong RU . Synthesis and characterization of tripyridine functionalized polyionic liquid luminescent materials. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 111-119. doi: 10.11862/CJIC.20250121

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    20. [20]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 100026-0. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(0)
  • Abstract views(1011)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return