Citation: ZHANG Xue-Qiao, TIAN Hao-Qi, YE Zhi-Xiang, CHEN Yao-Qiang. BaO Modified Pd-Based Catalysts: Synthesis by Impregnation/Co-Precipitation and Application in Gasoline-Methanol Exhaust Purification[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 166-176. doi: 10.11862/CJIC.2015.002 shu

BaO Modified Pd-Based Catalysts: Synthesis by Impregnation/Co-Precipitation and Application in Gasoline-Methanol Exhaust Purification

  • Corresponding author: CHEN Yao-Qiang, 
  • Received Date: 24 April 2014
    Available Online: 8 September 2014

    Fund Project: 国家自然科学基金(No.51408076,11405113) (No.51408076,11405113)四川省教育厅重点科研基金(No.14ZA0163) (No.14ZA0163)成都信息工程学院科研人才基金(No.J201416)资助项目. (No.J201416)

  • Barium oxide was developed to modify palladium catalysts supported on CeO2-ZrO2-La2O3-Al2O3 (CZLA) compound oxides by impregnation/co-precipitation methods. Low temperature N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the influence of the preparation method on physicochemical properties of the catalyst. Catalytic activity performance for methanol, CO, C3H8 and NO conversion was evaluated. Catalytic activity results show that the addition of BaO has a positive effect on the conversion of all pollutants, and the best results are achieved by the impregnation method. The light-off temperature decreases by 43, 31, 45 and 35 ℃, respectively. The XRD, H2-TPR and XPS results confirm that the impregnation method is mainly based on the surface modification. The enrichment of Ba2+ strengthens the Pd-Ce interaction in Pd-Ce interface, promoting the reductive ability, thus increasing the catalytic activity at low temperature. The co-precipitation method results in structure disorder and additional anion vacancies accompanied by the formation of more Ce3+, which may be beneficial to the conversion of CO.
  • 加载中
    1. [1]

      [1] Kowalewicz A, Wojtyniak M. Proc. Inst. Mech. Eng. J. Autom. Eng., 2005,219:103-125

    2. [2]

      [2] Cenk S, Kadir U, Mustafa C. Renew. Energy, 2008,33:1314 -1323

    3. [3]

      [3] McCabe R W, Mitchell P J. Appl. Catal., 1986,27:83-98

    4. [4]

      [4] Mondelli C, Santo D V, Trovarelli A, et al. Catal. Today, 2006,113:81-86

    5. [5]

      [5] Monte D R, Kaspar J, Fornasiero P, et al. Inorg. Chim. Acta, 2002,334:318-326

    6. [6]

      [6] Kenevey K, Valdivieso F, Soustelle M, et al. Appl. Catal. B: Environ., 2001,29:93-101

    7. [7]

      [7] Liotta L F, Longoa A, Macaluso A, et al. Appl. Catal. B: Environ., 2004,48:133-149

    8. [8]

      [8] Magdalena K, Elbieta T, Bogusaw M, et al. Appl. Catal. A: General, 2012,445-446:280-286

    9. [9]

      [9] Hungría A B, Browning N D, Erni R P, et al. J. Catal., 2005,235:251-61

    10. [10]

      [10] Osorio G P, Moyado S F, Petranovskii V, et al. Catal. Lett., 2006,1/2:110-116

    11. [11]

      [11] Vidmar P, Fornasiero P, KaŠpar J, et al. J. Catal., 1997,171: 160-168

    12. [12]

      [12] Tanja K, Ulla L, Katariina R T, et al. Appl. Catal. A: General, 2006,298:65-72

    13. [13]

      [13] Groppi G, Cristiani C, Lietti L, et al. Catal. Today, 1999,50: 399-412

    14. [14]

      [14] Atribak I, Bueno L A, García G A. J. Catal., 2008,259:123-132

    15. [15]

      [15] Martínez A A, Fernández G M, Hungría A B, et al. Catal. Today, 2007,126:90-105

    16. [16]

      [16] Thammachart M, Meeyoo V, Risksomboon T, et al. Catal. Today, 2001,68:53-60

    17. [17]

      [17] Damyanova S, Bueno J M C. Appl. Catal. A: General, 2003, 253:135-141

    18. [18]

      [18] Laurent S, Forge D, Port M, et al. Chem. Rev., 2008,108: 2064-2067

    19. [19]

      [19] Corbos E C, Courtois X, Bion N, et al. Appl. Catal. B: Environ., 2008,80:62-71

    20. [20]

      [20] Li G F, Wang Q Y, Zhao B, et al. J. Mol. Catal. A: Chem., 2010,326:69-74

    21. [21]

      [21] Corbos E C, Courtois X, Bion N, et al. Appl. Catal. B: Environ., 2007,76:357-367

    22. [22]

      [22] Piacentini M, Maciejewski M, Baiker A. Appl. Catal. B: Environ., 2006,66:126-136

    23. [23]

      [23] Sun K P, Lu W W, Wang M, et al. Appl. Catal. A: General, 2004,268:107-113

    24. [24]

      [24] Wang Q Y, Li G F, Zhao B, et al. J. Hazard. Mater., 2011,189:150-157

    25. [25]

      [25] Yamazaki S, Matsui T, Ohashi T, et al. Solid State Ionics, 2000,136-137:913-919

    26. [26]

      [26] Mikulova J, Rossignol S, Gerard F, et al. J. Solid State Chem., 2006,179:2511-2519

    27. [27]

      [27] Feio L S F, Hori C E, Damyanova S, et al. Appl. Catal. A: General, 2007,316:107-116

    28. [28]

      [28] HE Shen-Nan(何胜楠), SHI Zhong-Hua(史忠华), CHEN Yao-Qiang(陈耀强), et al. Acta Phys.-Chim. Sin.(物理化学 学报), 2011,27(5):1157-1162

    29. [29]

      [29] Voogt E H, Mens A J M, Gijzeman O L J, et al. Surf. Sci., 1996,350:21-31

    30. [30]

      [30] YAO Yan-Ling(姚艳玲), FANG Rui-Mei(方瑞梅), SHI Zhong-Hua(史忠华), et al. Chin. J. Catal.(催化学报), 2011,32:589-594

    31. [31]

      [31] Zhao M, Li X, Zhang L H, et al. Catal. Today, 2011,175: 430-434

    32. [32]

      [32] Larachi F, Pierre J, Adnot A, et al. Appl. Surf. Sci., 2002, 195:236-245

    33. [33]

      [33] Hungría A B, Fernández G M, Anderson J A, et al. J. Catal., 2005,235:262-271

    34. [34]

      [34] Wang J A, Aguilar R G, Wang R. Appl. Surf. Sci., 1999, 147:44-51

    35. [35]

      [35] Corbos E C, Courtois X, Bion N, et al. Appl. Catal. B: Environ., 2007,76:357-367

    36. [36]

      [36] Luo Y J, Xiao Y H, Cai G H, et al. Fuel, 2012,93:533-538

    37. [37]

      [37] Arosio F, Colussi S, Trovarelli A, et al. Appl. Catal. B: Environ., 2008,80:335-342

    38. [38]

      [38] Armor J N. Catal. Today, 1996,31:191-198

    39. [39]

      [39] Yang M, Li Y P, Wang J, et al. J. Catal., 2010,271:228-238

    40. [40]

      [40] Tanja K, Ulla L, Katariina R T, et al. Appl. Catal. A: General, 2006,298:65-72

    41. [41]

      [41] Peng N, Zhou J F, Chen S H, et al. J. Rare Earths, 2012,30: 342-349

    42. [42]

      [42] Fernández G M, Martnez A A, Iglesias J A, et al. Appl. Catal. B: Environ., 2001,31:39-50

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    3. [3]

      Yutong Liu Xuemin Jing . Research Progress on the Catalytic Conversion of Methane in the Context of the “Dual Carbon” Goals. University Chemistry, 2025, 40(10): 101-113. doi: 10.12461/PKU.DXHX202412018

    4. [4]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    5. [5]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    6. [6]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    11. [11]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    19. [19]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

Metrics
  • PDF Downloads(1)
  • Abstract views(751)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return