Citation: HE Jing-Fang, WU Yi, SHI Ru-Qian, ZHOU Peng-Li, ZHENG Shu-Ka. First-Principles Calculation on the Conductivity and Optical Transmittance of ZnO Codoped with Ga-F[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 15-22. doi: 10.11862/CJIC.2015.001 shu

First-Principles Calculation on the Conductivity and Optical Transmittance of ZnO Codoped with Ga-F

  • Corresponding author: ZHENG Shu-Ka, 
  • Received Date: 14 April 2014
    Available Online: 2 September 2014

    Fund Project: 国家自然科学基金(No.61306098) (No.61306098)国家留学基金(No.2014-3012) (No.2014-3012)河北大学大学生创新创业训练计划(No.2014038)资助项目. (No.2014038)

  • The related properties of intrinsic, Ga-, F-doped and Ga-Fcodoped ZnO are calculated after making geometry optimization using first principles plane-wave ultrasoft pseudopotential method based on the density functional theory. The results show that every doped ZnO has its own advantages and disadvantages, so there is different doping scheme according to specific requirement. The lattice distortion in Ga doped ZnO is smaller than Fdoped ZnO. And Ga doped ZnO has more stable structure than Fdoped ZnO, since Ga atoms are more likely to enter the ZnO lattice than Fatoms under the same environment. Doping Ga and Fimproves the conductivity of ZnO. Compared with intrinsic ZnO, the carrier concentration of doped ZnO is increased by three orders of magnitude. And doping Ga can produce more carriers than doping Fin the same concentration. Ga-Fcodoped ZnO reaches a compromise between merits and demerits of these properties above in Ga-doped and F-doped ZnO. In addition, the optical absorptions of doped ZnO generate a blue shift. The optical transmittance of Ga-Fcodoped ZnO is the biggest in ultraviolet region, and it is higher than 90% in 280~380 nm range.
  • 加载中
    1. [1]

      [1] ZHAO Xie-Qun(赵谢群). Electron. Compo. Mater.(电子元件 与材料), 2000,19(1):40

    2. [2]

      [2] LI Bao-Jia(李保家). Thesis for the Doctorate of Jiangsu University(江苏大学博士论文). 2012.

    3. [3]

      [3] Estrich N A, Hook D H, Smith A N, et al. J. Appl. Phys., 2013,113(23):233703

    4. [4]

      [4] Gong L, Lu J, Ye Z. Sol. Energy Mater. Sol. Cells, 2010,94 (6):937-941

    5. [5]

      [5] Guo J, Zheng J, Song X, et al. Mater. Lett., 2013,97:34-36

    6. [6]

      [6] Cao L, Zhu L P, Chen W F, et al. Opt. Mater., 2013,35(6): 1293-1296

    7. [7]

      [7] Nam G M, Kwon M S. Mater. Lett., 2011,7(2):127-131

    8. [8]

      [8] Choi B G, Kim I H, Kim D H, et al. J. Eur. Ceram. Soc., 2005,25(12):2161-2165

    9. [9]

      [9] Shi Q, Zhou K, Dai M, et al. Vacuum, 2013,94:81-83

    10. [10]

      [10] Van de Walle C G, Neugebauer J. J. Appl. Phys., 2004,95 (8):3851-3879

    11. [11]

      [11] YU Pei-Qing(于培清). Thesis for the Masterate of Tianjin University(天津大学硕士论文). 2010.

    12. [12]

      [12] LIU Jian-Jun(刘建军). Acta Phys. Sin.(物理学报), 2010,59 (9):6466-6472

    13. [13]

      [13] ZHAO Dong-Qiu(赵冬秋). Thesis for the Masterate of Henan University(河南大学硕士论文). 2008.

    14. [14]

      [14] LIU En-Ke(刘恩科), ZHU Bing-Sheng(朱秉升), LUO Jin-Sheng(罗晋生). Physics of Semiconductors. 7th Ed.(半导体 物理学.7版). Beijing: Publishing House of Electronics Industry, 2011.

    15. [15]

      [15] YE Yu-Min(叶羽敏). Thesis for the Masterate of Zhejiang University(浙江大学硕士论文). 2006.

    16. [16]

      [16] Sun F, Shan C X, Wang S P, et al. Appl. Surf. Sci., 2010, 256(11):3390-3393

    17. [17]

      [17] Terasako T, Ogura Y, Fujimoto S, et al. Thin Solid Films, 2013,549:12-17

    18. [18]

      [18] Zhang X, Zhu L, Xu H, et al. J. Alloys Compd., 2014,614: 71-74

    19. [19]

      [19] SHEN Xue-Chu(沈学础). Spectroscopy and Optical Proper-ties of Semiconductors. 2nd Ed.(半导体光谱和光学性质.2 版). Beijing: Science Press, 2002.

    20. [20]

      [20] FANG Rong-Chuan(方容川). Solid Spectroscopy(固体光谱 学). Hefei: Press of University of Science and Technology of China, 2001.

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    8. [8]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    13. [13]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    14. [14]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    15. [15]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    16. [16]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

Metrics
  • PDF Downloads(0)
  • Abstract views(351)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return