Citation: CHEN Qi, FEI Xia, HE Qin-Qin, LÜ Meng-Meng, WU Qi-Liang, LIU Xue-Ting, HE Bing. Preparation and Photocatalytic Properties of MIL-101/P25 Composites[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 993-1000. doi: 10.11862/CJIC.2014.175 shu

Preparation and Photocatalytic Properties of MIL-101/P25 Composites

  • Received Date: 18 December 2013
    Available Online: 18 December 2013

    Fund Project: 安徽高校省级自然科学研究重点资助项目(No.KJ2010A271)。 (No.KJ2010A271)

  • Via hydrothermal method, MIL-101 was loaded on to the pretreated P25 to obtain MIL-101/P25 composites that were structurally characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption (BET), thermogravimetry (TG), field emission transmission electron microscopy (FETEM) and photoluminescence (PL), meanwhile, the stability of MIL-101 and the composites was investigated, and the synergistic effect induced by compounding was quantitatively evaluated by the proposed synergistic factor. The results show that MIL-101 has sheet-like morphology, and a portion of it combined with P25. After compounding, the stability of MIL-101 is promoted. Compounding can bring the synergistic effect at the appropriate ratio, and when the molar ratio of Cr(NO3)3·9H2O to P25 is 1:1, the composite exhibits the highest activity for the visible light photocatalytic degradation of rhodamine B, and the synergistic factor is 1.64. The composite also exhibits high photocatalytic activity for the degradation of colorless organic pollutant salicylic acid.
  • 加载中
    1. [1]

      [1] WU Jun-Min(吴俊明), WANG Ya-Ping(王亚平), YANG Han-Pei(杨汉培), et al. Chinese J. Inorg. Chem. (无机化学 学报), 2010, 26(2):203-210

    2. [2]

      [2] LIU Su-Qin(刘素芹), DAI Gao-Peng(戴高鹏), LIANG Ying (梁英), et al. Acta Phys.-Chim. Sin. (物理化学学报), 2013, 29(3):585-589

    3. [3]

      [3] Bux H, Liang F Y, Li Y S, et al. J. Am. Chem. Soc., 2009, 131(44):16000-16001

    4. [4]

      [4] Du J J, Yuan Y P, Sun J X, et al. J. Hazard. Mater., 2011, 190(1/2/3):945-951

    5. [5]

      [5] Yu H, Takashi T, Masakazu S, et al. J. Phys. Chem. C, 2012, 116(39):20848-20853

    6. [6]

      [6] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548-7558

    7. [7]

      [7] Wu F, Qiu L G, Ke F, et al. Inorg. Chem. Commun., 2013, 32:5-8

    8. [8]

      [8] Murray L J, Dinc M, Long J R. Chem. Soc. Rev., 2009, 38(5): 1294-1314

    9. [9]

      [9] Hong D Y, Hwang Y K, Serre C, et al. Adv. Funct. Mater., 2009, 19(10):1537-1552

    10. [10]

      [10] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548-7558

    11. [11]

      [11] Tsuruoka T, Kawasaki H, Nawafune H, et al. ACS Appl. Mater. Inter., 2011, 3(10):3788-3791

    12. [12]

      [12] Sun Z G, Li G, Liu L P, et al. Catal. Comm., 2012, 27:200-205

    13. [13]

      [13] Xiang Z, Peng X, Cheng X, et al. J. Phys. Chem. C, 2011, 115(40):19864-19871

    14. [14]

      [14] Lim D W, Yoon J W, Ryu K Y, et al. Angew. Chem. Int. Ed., 2012, 51(39):9814-9817

    15. [15]

      [15] Zhou G M, Wang D W, Yin L C, et al. ACS Nano, 2012, 6 (4):3214-3223

    16. [16]

      [16] Zhong R Q, Zou R Q, Nakagawa T, et al. Inorg. Chem., 2012, 51(5):2728-2730

    17. [17]

      [17] Glover T G, Sabo D, Vaughan L A, et al. Langmuir, 2012, 28(13):5695-5702

    18. [18]

      [18] Ferey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309:2040-2042

    19. [19]

      [19] Prasanth K P, Rallapalli P, Raj M C, et al. Int. J. Hydrogen Energ., 2011, 36(13):7594-7601

    20. [20]

      [20] Chen C, Zhang M, Guan Q X, et al. Chem. Eng. J., 2012, 183:60-67

    21. [21]

      [21] Butler M A. J. Appl. Phys., 1977, 48:1914-1920

    22. [22]

      [22] Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331:746-749

    23. [23]

      [23] Wu T X, Liu G M, Zhao J C. J. Phys. Chem. B, 1998, 102 (30):5845-5851

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(276)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return