Citation: CHEN Qi, FEI Xia, HE Qin-Qin, LÜ Meng-Meng, WU Qi-Liang, LIU Xue-Ting, HE Bing. Preparation and Photocatalytic Properties of MIL-101/P25 Composites[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 993-1000. doi: 10.11862/CJIC.2014.175 shu

Preparation and Photocatalytic Properties of MIL-101/P25 Composites

  • Received Date: 18 December 2013
    Available Online: 18 December 2013

    Fund Project: 安徽高校省级自然科学研究重点资助项目(No.KJ2010A271)。 (No.KJ2010A271)

  • Via hydrothermal method, MIL-101 was loaded on to the pretreated P25 to obtain MIL-101/P25 composites that were structurally characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption (BET), thermogravimetry (TG), field emission transmission electron microscopy (FETEM) and photoluminescence (PL), meanwhile, the stability of MIL-101 and the composites was investigated, and the synergistic effect induced by compounding was quantitatively evaluated by the proposed synergistic factor. The results show that MIL-101 has sheet-like morphology, and a portion of it combined with P25. After compounding, the stability of MIL-101 is promoted. Compounding can bring the synergistic effect at the appropriate ratio, and when the molar ratio of Cr(NO3)3·9H2O to P25 is 1:1, the composite exhibits the highest activity for the visible light photocatalytic degradation of rhodamine B, and the synergistic factor is 1.64. The composite also exhibits high photocatalytic activity for the degradation of colorless organic pollutant salicylic acid.
  • 加载中
    1. [1]

      [1] WU Jun-Min(吴俊明), WANG Ya-Ping(王亚平), YANG Han-Pei(杨汉培), et al. Chinese J. Inorg. Chem. (无机化学 学报), 2010, 26(2):203-210

    2. [2]

      [2] LIU Su-Qin(刘素芹), DAI Gao-Peng(戴高鹏), LIANG Ying (梁英), et al. Acta Phys.-Chim. Sin. (物理化学学报), 2013, 29(3):585-589

    3. [3]

      [3] Bux H, Liang F Y, Li Y S, et al. J. Am. Chem. Soc., 2009, 131(44):16000-16001

    4. [4]

      [4] Du J J, Yuan Y P, Sun J X, et al. J. Hazard. Mater., 2011, 190(1/2/3):945-951

    5. [5]

      [5] Yu H, Takashi T, Masakazu S, et al. J. Phys. Chem. C, 2012, 116(39):20848-20853

    6. [6]

      [6] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548-7558

    7. [7]

      [7] Wu F, Qiu L G, Ke F, et al. Inorg. Chem. Commun., 2013, 32:5-8

    8. [8]

      [8] Murray L J, Dinc M, Long J R. Chem. Soc. Rev., 2009, 38(5): 1294-1314

    9. [9]

      [9] Hong D Y, Hwang Y K, Serre C, et al. Adv. Funct. Mater., 2009, 19(10):1537-1552

    10. [10]

      [10] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46(40):7548-7558

    11. [11]

      [11] Tsuruoka T, Kawasaki H, Nawafune H, et al. ACS Appl. Mater. Inter., 2011, 3(10):3788-3791

    12. [12]

      [12] Sun Z G, Li G, Liu L P, et al. Catal. Comm., 2012, 27:200-205

    13. [13]

      [13] Xiang Z, Peng X, Cheng X, et al. J. Phys. Chem. C, 2011, 115(40):19864-19871

    14. [14]

      [14] Lim D W, Yoon J W, Ryu K Y, et al. Angew. Chem. Int. Ed., 2012, 51(39):9814-9817

    15. [15]

      [15] Zhou G M, Wang D W, Yin L C, et al. ACS Nano, 2012, 6 (4):3214-3223

    16. [16]

      [16] Zhong R Q, Zou R Q, Nakagawa T, et al. Inorg. Chem., 2012, 51(5):2728-2730

    17. [17]

      [17] Glover T G, Sabo D, Vaughan L A, et al. Langmuir, 2012, 28(13):5695-5702

    18. [18]

      [18] Ferey G, Mellot-Draznieks C, Serre C, et al. Science, 2005, 309:2040-2042

    19. [19]

      [19] Prasanth K P, Rallapalli P, Raj M C, et al. Int. J. Hydrogen Energ., 2011, 36(13):7594-7601

    20. [20]

      [20] Chen C, Zhang M, Guan Q X, et al. Chem. Eng. J., 2012, 183:60-67

    21. [21]

      [21] Butler M A. J. Appl. Phys., 1977, 48:1914-1920

    22. [22]

      [22] Chen X B, Liu L, Yu P Y, et al. Science, 2011, 331:746-749

    23. [23]

      [23] Wu T X, Liu G M, Zhao J C. J. Phys. Chem. B, 1998, 102 (30):5845-5851

  • 加载中
    1. [1]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    2. [2]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    5. [5]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    6. [6]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    11. [11]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    18. [18]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    19. [19]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(709)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return