Citation: WANG Yue-Hui, WANG Ting, ZHOU Ji. Effects of Silver Nanoparticles on the Luminescent Properties of Europium Complex[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1179-1186. doi: 10.11862/CJIC.2014.161 shu

Effects of Silver Nanoparticles on the Luminescent Properties of Europium Complex

  • Received Date: 30 August 2013
    Available Online: 12 December 2013

    Fund Project: 国家自然科学基金(No.61302044) (No.61302044)广东省自然科学基金(No.S2012010010646)资助项目。 (No.S2012010010646)

  • Adetailed study of the effects of silver nanoparticles on the luminescent properties of the europium complex (Eu(Ⅲ)C7H5NO4, Eu(Ⅲ)DPA), where DPAis dipicolinic acid, in the aqueous solution system was reported. The emission intensity of the Eu(Ⅲ)DPA solution initially increased with increasing of the amount of silver colloids and then decreased. The large silver nanoparticles resulted in the high enhancement efficiency and the low amount at which the enhancement efficiency reaches the maximum. The emission intensity was quenched by silver nanoparticles in high concentration of Eu(Ⅲ)DPA solution. The enhancement for the emission of electric dipole transition was stronger than that of magnetic dipole transition. The observed silver nanoparticles dependences of the luminescent intensity were regarded as the result of a stronger coupling between the surface plasmon resonance and the excited luminescence centers and re-absorption of surface plasmon resonance of silver nanoparticles. Meanwhile, the asymmetric ratio of the europium luminescence affected by silver nanoparticles was discussed in terms of the local electromagnetic field enhancement, refractive index, and the ligand field around europium ion.
  • 加载中
    1. [1]

      [1] Eltzov E, Prilutsky D, Kushmaro A, et al. Appl. Phys. Lett., 2009, 94:083901-1-3

    2. [2]

      [2] Aslan K, Zhang Y, Geddes C D. Anal. Chem., 2009, 81:6913-6922

    3. [3]

      [3] Xie F, Baker M S, Goldys E M. Chem. Mater., 2008, 20:1788-1797

    4. [4]

      [4] Wang Z, Zong S, Yang J, e al. Biosens Bioelectron, 2011, 26: 2883-2889

    5. [5]

      [5] Aslan K, Malyn S N, Geddes C D. Chem. Phys. Lett., 2008, 453:222-228

    6. [6]

      [6] Ming T, Zhao L, Chen H J, et al. Nano Lett., 2011, 11:2296-2303

    7. [7]

      [7] Previte J R M, Zhang Y, Aslan K, et al. Appl. Phys. Lett., 2007, 91:151902-1-3

    8. [8]

      [8] Ray K, Chowdhury M H, Lakowicz J R. Anal. Chem., 2007, 79:6480-6487

    9. [9]

      [9] Aslan K, Geddes C D. Appl. Phys. Lett., 2009, 94:073104-1-3

    10. [10]

      [10] Tovmachenko O G, Graf C, Heuvel D J, et al. Adv. Mater., 2006, 18:91-95

    11. [11]

      [11] Stender A S, Wang G, Sun W. ACS Nano, 2010, 4:7667-7675

    12. [12]

      [12] Lu G, Zhang T, Li W, et al. J. Phys. Chem. C, 2011, 115: 15822-1-3

    13. [13]

      [13] Geddes C D, Parfenov A, Roll D, et al. J. Fluorescence, 2003, 13:267-276

    14. [14]

      [14] Liaw J W, Tsai H, Huang C. Plasmonics, 2012, 7:543-553

    15. [15]

      [15] Campion A, Gallo A R, Harris C B, et al. Chem. Phys. Lett., 1980, 73:447-450

    16. [16]

      [16] Hayakawa T, Furuhashi K, Nogami M. J. Phys. Chem. B, 2004, 108:11301-11307

    17. [17]

      [17] Wu M, Lakowicz J R, Geddes C D. J. Fluorescence, 2005, 15:53-59

    18. [18]

      [18] Ipe B I, Yoosaf K, Thomas K G. J. Am. Chem. Soc., 2006, 128:1907-1913

    19. [19]

      [19] Wang Y, Zhou J, Wang T. Mater. Lett., 2008, 62:1937-1940

    20. [20]

      [20] Lakowicz J R, Maliwal B P, Malicka J, et al. J. Fluorescence, 2002, 12:431-437

    21. [21]

      [21] Fu Y, Zhang J, Lakowicz J R. J. Am. Chem. Soc., 2010, 132: 5540-5541

    22. [22]

      [22] Hayakawa T, Selvan S T, Nogami M. J. Non-Cryst. Solids, 1999, 259:16-22

    23. [23]

      [23] Nabika H, Deki S. Eur. Phys. J. D, 2003, 24:369-372

    24. [24]

      [24] Nabika H, Deki S. J. Phys. Chem. B, 2003, 107:9161-9164

    25. [25]

      [25] Wang Y, Zhou X, Wang T, et al. Materials Letters, 2008, 62: 3582-3584

    26. [26]

      [26] WANG Yue-Hui(王悦辉), WANG Ting(王婷), ZHOU Ji(周 济). Chinese Journal of Inorganic Chemistry(无机化学学 报), 2008, 24:205-210

    27. [27]

      [27] WANG Yue-Hui(王悦辉), ZHOU Ji(周济), SHI Shikao(石士 考). Spectroscopy and Spectral Analysis(光谱学与光谱分 析), 2007, 27:1555-1559

    28. [28]

      [28] Messinger B J, Ulrich K, Raben R K, et al. Phys. Rev. B, 1981, 24:649-657

    29. [29]

      [29] Viste P, Plain J, Jaffiol R, et al. ACS Nano., 2011, 4:759-764

    30. [30]

      [30] Selvan S T, Hayakawa T, Nogami M. J. Phys. Chem. B, 1999, 103:7064-7067

  • 加载中
    1. [1]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    2. [2]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    3. [3]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    20. [20]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

Metrics
  • PDF Downloads(0)
  • Abstract views(455)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return