Citation: LI Ling, LIN Kui, ZHANG Fan, CUI Lan, WANG Hui, CHEN Xiao-Ping, ZHANG Li-Shuang, Sayyar Ali Shah, CUI Shen. Preparation of N-Doped Long Bamboo-Like Carbon Nanotubes and Their Growth Mechanism[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(5): 1097-1103. doi: 10.11862/CJIC.2014.157 shu

Preparation of N-Doped Long Bamboo-Like Carbon Nanotubes and Their Growth Mechanism

  • Received Date: 8 October 2013
    Available Online: 17 December 2013

  • N-doped long bamboo-like carbon nanotubes(NDLBLCNTs) were prepared by DCarc-discharge with the coevaporation of anode and stainless steel sheet(SSS). The morphology, structure, and composition of the products were characterized by using scanning electron microscope(SEM), field emission high resolution transmission electron microscope(HRTEM), energy dispersive X-ray(EDX) spectrometer, electron energy loss spectroscopy (EELS), and transmission electron microscope(TEM). The results show that the lengths of the NDLBLCNTs are between 640 nm and 835 nm, the inner diameters are in the range of 23~35 nm, and the outer diameters are in the range of 28~47 nm. In each of the inner cavities formed at the "bamboo joints" there is a black nanoparticle. Both the diameters of such black nanoparticles and the content of NDLBLCNTs in the product are related with the melted and evaporated area of the SSS. The temperature gradient between the SSSand the center of arc discharge zone is about 87.5~94.4 ℃·mm-1. The coevaporation of the SSS together with the anode is the sufficient and necessary condition for the formation NDLBLCNTs. The growth mechanism of the NDLBLCNTs is discussed briefly.
  • 加载中
    1. [1]

      [1] Iijima S. Nature, 1991, 354(6348):56-58

    2. [2]

      [2] Iijima S, Ichihashi T. Nature, 1993, 363(6430):603-605

    3. [3]

      [3] TONG Yu(佟钰), REN Wen-Cai(任文才), ZHAO Zhi-Gang (赵志刚), et al. Chinese J. New Carbon Mater. (新型碳材 料), 2003, 18(2):101-105

    4. [4]

      [4] Fan S S, Chapline M G, Franklin N R, et al. Science, 1999, 283(5401):512-514

    5. [5]

      [5] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297(5582):787-792

    6. [6]

      [6] Qi X Y, Pu K Y, Li H, et al. Angew. Chem. Int. Ed., 2010, 49(49):9426-9429

    7. [7]

      [7] Wang H L, Cui L F, Yang Y, et al. J. Am. Chem. Soc., 2010, 132(40):13978-13980

    8. [8]

      [8] Heng L Y, Chou A, Yu J, et al. Electrochem. Commun., 2005, 7(12):1457-1462

    9. [9]

      [9] Reddy A L, Shailumon M M, Gowda S R, et al. Nano Lett., 2009, 9(3):1002-1006

    10. [10]

      [10] Gomez De Arco L, Zhang Y, Schlenker C W, et al. ACS Nano, 2010, 4(5):2865-2873

    11. [11]

      [11] Wang X, Zhi L J, Tsao N, et al. Angew. Chem. Int. Ed., 2008, 47(16):2990-2992

    12. [12]

      [12] Li X S, Cai W W, An J, et al. Science, 2009, 324(5932): 1312-1314

    13. [13]

      [13] Dong X C, Su C Y, Zhang W J, et al. Phys. Chem. Chem. Phys., 2010, 12(9):2164-2169

    14. [14]

      [14] He Q Y, Sudibya H G, Yin Z Y, et al. ACS Nano, 2010, 4 (6):3201-3208

    15. [15]

      [15] Endo M, Strano M S, Ajayan P M. Top. Appl. Phys., 2008, 111:13-62

    16. [16]

      [16] Zhu G, Zou X P, Cheng J. Advanced Materials Research: Vol. 47-50. Lau A K T, Lu J, Varadan V K, et al., Ed., Stafa-Zurich Trans Tech Publications, 2008:355-358

    17. [17]

      [17] Su L F, Wang J N, Fan W, et al. Chem. Vapor Depos., 2005, 11(8/9):351-354

    18. [18]

      [18] Liu J W, Shao M W, Chen X Y, et al. J. Am. Chem. Soc., 2003, 125(27):8088-8089

    19. [19]

      [19] Wang Z Y, Zhao Z B, Qiu J S. Carbon, 2006, 44(7):1321-1324

    20. [20]

      [20] Du G H, Li W Z, Liu Y Q, et al. J. Phys. Chem. C, 2007, 111(39):14293-14298

    21. [21]

      [21] Yao Z Y, Zhu X, Li X X, et al. Carbon, 2007, 45(7):1566-1570

    22. [22]

      [22] Adveeva L B, Goncharova O V, Kochubey D I, et al. Appl. Catal. A, 1996, 141(1/2):117-129

    23. [23]

      [23] Martel R, Shea H R, Avouris P. J. Phys. Chem. B, 1999, 103 (36):7551-7556

    24. [24]

      [24] Saito Y. Carbon, 1995, 33(7):979-988

    25. [25]

      [25] SHI Shu-Xiu(石淑秀). Thesis for the Masterate of Tianjin University(天津大学硕士论文). 2012.

    26. [26]

      [26] Saito Y, Yoshikawa T. J. Cryst. Growth, 1993, 134(1/2):154-156

    27. [27]

      [27] Lee C J, Park J. J. Phys. Chem. B, 2001, 105(12):2365-2368

    28. [28]

      [28] Chen Y, Shaw D T, Guo L P. Appl. Phys. Lett., 2000, 76 (17):2469-2471

    29. [29]

      [29] Wang C, Zhan L, Wang Y L, et al. Appl. Surf. Sci., 2010, 257(3):932-936

    30. [30]

      [30] Li Y F, Qiu J S, Zhao Z B, et al. Chem. Phys. Lett., 2002, 366(5/6):544-550

    31. [31]

      [31] ZHAO Xue-Fei(赵雪飞), QIU Jie-Shan(邱介山), SUN Ye-Xin(孙业新), et al. Chinese J. New Carbon Mater. (新型碳 材料), 2009, 24(2):109-113

    32. [32]

      [32] Li D C, Dai L M, Huang S M, et al. Chem. Phys. Lett., 2000, 316(5-6):349-355

    33. [33]

      [33] Wang F, Lang L M, Li B J, et al. Mater. Lett., 2010, 64(1): 86-88

    34. [34]

      [34] González I, De Jesus J, Caizales E. Micron, 2011, 42(8): 819-825

    35. [35]

      [35] Hatta N, Murata K. Chem. Phys. Lett., 1994, 217(4):398-402

    36. [36]

      [36] Zhang X X, Li Z Q, Wen G H, et al. Chem. Phys. Lett., 2001, 333(6):509-514

    37. [37]

      [37] ZHANG Fan(张帆). Thesis for the Doctorate of Tianjin University(天津大学博士论文). 2013.

    38. [38]

      [38] Cui S, Scharff P, Siegmund C, et al. Carbon, 2004, 42(5/6): 931-939

    39. [39]

      [39] Stéphan O, Ajayan P M, Colliex C, et al. Phys. Rev. B, 1996, 53(20):13824-13829

    40. [40]

      [40] Suenaga K, SandréE, Colliex C, et al. Phys. Rev. B, 2001, 63(16):165408(1-4)

    41. [41]

      [41] Terrones M, Ajayan P M, Banhart F, et al. Appl. Phys. A, 2002, 74(3):355-361

    42. [42]

      [42] Terrones M, Redlich P, Grobert N, et al. Adv. Mater., 1999, 11(8):655-658

    43. [43]

      [43] Glerup M, Steinmetz J, Samaille D, et al. Chem. Phys. Lett., 2004, 387(1/3):193-197

    44. [44]

      [44] Kovalevski V V, Safronov A N. Carbon, 1998, 36(7/8):963-968

    45. [45]

      [45] Elliott B R, Host J J, Dravid V P, et al. J. Mater. Res., 1997, 12(12):3328-3344

    46. [46]

      [46] YAN Biao (严彪). Stainless steel Handbook (不锈钢手册). Beijing: Chemical Industry Press, 2009:470

    47. [47]

      [47] Haynes W M. CRC Handbook of Chemistry and Physics: 92nd Edition. New York: CRC Press, 2011-2012, Sect. 4: 19.

    48. [48]

      [48] Fan Y, Wang Y S, Lou J S, et al. J. Am. Ceram. Soc., 2006, 89(2):740-742

    49. [49]

      [49] Lee C J, Park J. Appl. Phys. Lett., 2000, 77(21):3397-3399

    50. [50]

      [50] Deck C P, Vecchio K. Carbon, 2005, 43(12):2608-2617

    51. [51]

      [51] Dasgupta K, Joshi J B, Banerjee S. Chem. Eng. J., 2011, 117 (3):841-869

    52. [52]

      [52] GUAN Lei(关磊), CUI Shen(崔屾), CUI Lan(崔兰), et al. Chinese J. Nanotechnology and Precision Engineering(纳米 技术与精密工程), 2009, 7(5):403-407

    53. [53]

      [53] Sarkar A, Kroto H W, Endo M. Carbon, 1995, 33(1):51-55

    54. [54]

      [54] Smalley R E. Mater. Sci. Eng. B, 1993, 19(1/2):1-7

    55. [55]

      [55] Guo T, Nikolaev P, Thess A, et al. Chem. Phys. Lett., 1995, 243:49-54

    56. [56]

      [56] Kukovitsky E F, Lvov S G, Sainov N A. Chem. Phys. Lett., 2000, 317(1/2):65-70

    57. [57]

      [57] WANG Yan-Yan (王艳艳), CUI Shen(崔屾), CUI Lan (崔兰), et al. Mater. Sci. Technol. (材料科学与工程学报), 2008, 26(1):86-89

    58. [58]

      [58] Sun L, Wang C L, Zhou Y, et al. Appl. Surf. Sci., 2013, 277: 88-93

    59. [59]

      [59] Hatakeyama R, Jeong G H, Kato T, et al. J. Appl. Phys., 2004, 96(11):6053-6060

    60. [60]

      [60] Ohno M, Yoh K. J. Appl. Phys., 2007, 102(12):123908(1-9)

    61. [61]

      [61] Greenberger D, Hentschel K, Weinert F. Compendium of Quantum Physics. London New York: Springer Berlin Heidelberg, 2009:862-864

    62. [62]

      [62] Huo K F, Hu Z, Chen F, et al. Appl. Phys. Lett., 2002, 80 (19):3611-3613

    63. [63]

      [63] Qiu H X, Yang G Z, Zhao B. Carbon, 2013, 53:137-144

    64. [64]

      [64] Liang X L, Dong X, Lin G D, et al. Appl. Catal. B: Env., 2009, 88(3/4):315-322

    65. [65]

      [65] Ugarte D. Nature, 1992, 359(6397):707-709

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    3. [3]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

Metrics
  • PDF Downloads(0)
  • Abstract views(273)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return