Citation: CHEN Jun-Gang, PENG Tong-Jiang, SUN Hong-Juan, LIU Bo, ZHAO Er-Zheng. Influence of Reduction Temperature on Functional Groups, Structures and Humidity Sensitivity of Graphite Oxide[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 779-785. doi: 10.11862/CJIC.2014.153 shu

Influence of Reduction Temperature on Functional Groups, Structures and Humidity Sensitivity of Graphite Oxide

  • Corresponding author: PENG Tong-Jiang, 
  • Received Date: 28 July 2013
    Available Online: 11 December 2013

    Fund Project: 国家自然科学基金资助项目(No.41272051);西南科技大学博士基金(No.11ZX7135)。 (No.41272051);西南科技大学博士基金(No.11ZX7135)

  • Based on the various functional groups of graphite oxide, the influence of reduction temperature on structures and humidity sensitivity of graphite oxide has been studied. High oxidized graphene oxide samples prepared by modified Hummers method were reduced at different temperature. And the humidity sensors were made with the reduction products. Functional groups and structures changes of the experiment process samples were carried out by FTIR, XRD and Raman spectrum. The results show that functional groups of -OH, epoxy group, C=O and COOH were combined with the structure layer of carbon atoms during oxidation process. And the basal spacing of graphite oxide is about 0.9084 nm. As the increase of reduction temperature, functional groups were gradually thermal decomposition and the graphitization area gradually restored, but the relative sizes were decreased and the defects were increased. Furthermore, the basal spacing of graphite oxide was decreased from 0.9084 nm to 0.4501 nm along the c axis. The resistances of the graphite oxide thin film were decreased from 10.32 MΩ to 41.1 Ω. In the relative humidity of 11.3%~93.6%, the resistance of the graphite oxide thin film humidity elements was significantly reduced with increasing of humidity. The higher of the reduction degree was, the longer of element's response time was and the shorter of the element's desorption time was. The graphite oxide film humidity element of 150 ℃ reduction was the best humidity sensitive performance.
  • 加载中
    1. [1]

      [1] WAN Chen(万臣), PENG Tong-Jiang(彭同江), SUN Hong-Juan(孙红娟), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2012, 28(5):915-921

    2. [2]

      [2] Buchsteiner A, Lerf A, Pieper J. J. Phys. Chem. B, 2006, 110 (45):22328-22338

    3. [3]

      [3] XIAO Min(肖敏), DU Xu-Sheng(杜续生), MENG Yue-Zhong (孟跃中), et al. New Carbon Mater.(新型炭材料), 2004, 19 (2):92-96

    4. [4]

      [4] ZOU Yan-Hong(邹艳红), LIU Hong-Bo(刘洪波), FU Ling(傅 玲), et al. J. Chinese Ceram. Soc.(硅酸盐学报), 2006, 34(3): 318-323

    5. [5]

      [5] Jeong H K, Lee Y P, Jin M H, et al. Chem. Phys. Lett., 2009, 470(4):255-258

    6. [6]

      [6] HANG Qiao(黄桥), SUN Hong-Juan(孙红娟), YANG Yong-Hui(杨勇辉). Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(9):1721-1726

    7. [7]

      [7] Xu J, Hu Y, Song L, et al. Polym. Degrad. Stabil., 2001, 73 (1):29-31

    8. [8]

      [8] Wang X, Dou W. Thermochim. Acta, 2012, 529:25-28

    9. [9]

      [9] Tulliani J M, Cavalieri A, Musso S, et al. Sensor Actuat. B-Chem., 2011, 152(2):144-154

    10. [10]

      [10] Akhavan O. Carbon, 2010, 48(2):509-519

    11. [11]

      [11] WANG Ya-Ling(王亚玲), GAO Peng(高鹏), WU Xiao-Jing (吴晓婧), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(2):391-397

    12. [12]

      [12] HAN Zhi-Dong(韩志东), WANG Jian-Qi(王建祺). Chinese J. Inorg. Chem.(无机化学学报), 2003, 19(5):459-461

    13. [13]

      [13] LIU Xiu-Ying(刘秀影), SONG Ying(宋英), LI Cun-Mei(李 存梅), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011, 27(11):2128-2132

    14. [14]

      [14] Cerveny S, Barroso-Bujans F, Alegria A, et al. J. Phys. Chem. C, 2010, 114(6):2604-2612

    15. [15]

      [15] Acik M, Mattevi C, Gong C, et al. ACS Nano., 2010, 4(10): 5861-5868

    16. [16]

      [16] Yao Y, Chen X, Guo H, et al. Appl. Surf. Sci., 2011, 257 (17):7778-7782

    17. [17]

      [17] Lu G, Ocola L E, Chen J. Nanotechnology, 2009, 20(44): 445502

    18. [18]

      [18] Ferrari A C. Solid State Commun., 2007, 143(1):47-57

    19. [19]

      [19] WANG Zhi-Min(王智民), HAN Ji-Xin(韩基新), LIU Jing-Bo (刘静波). J. Inorg. Mater.(无机材料学报), 2002, 17(6):1187-1193

    20. [20]

      [20] Marliere C, Poncharal P, Vaccarini L, et al. MRS Proceedings. Boston: Cambridge University Press, 1999, 593(1):173-179

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    5. [5]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    19. [19]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    20. [20]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

Metrics
  • PDF Downloads(0)
  • Abstract views(772)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return