Citation: ZHANG Jun-Jun, ZHONG Ya, SHEN Xiao-Dong, CUI Sheng, KONG Yong, JI Li-Li, LI Bo-Ya. Properties and Characterization of SiO2 Monolithic Aerogels Doped with Yttrium[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 793-799. doi: 10.11862/CJIC.2014.136
-
Yttrium doped SiO2 monolithic aerogels were prepared with YCl3·6H2O, TEOS as raw material by sol-gel method and CO2 supercritical drying technique, and the doping concentrations are in the range of 5wt%~30wt% Y2O3. The structures and properties of samples were analyzed by means of SEM (Scanning electron microscope), TEM (Transmission electron microscope), XRD (X-ray diffraction), BET (Brunauer-Emmett-Teller) and XRF (X-ray fluorescence). The results showed that Y2O3-SiO2 aerogels maintained the original space network structures of SiO2 aerogels. Improvements in thermal stability were obtained by incorporation of yttrium species during the aerogels preparation. When treated by the thermal treatment with 900 ℃ for 2 h, the 10wt% (0.447 g of YCl3·6H2O)Y2O3-SiO2 aerogels still showed an amorphous state and gave a larger surface area of 643.79 m2·g-1,and the average pore diameter was about 21.3 nm.
-
-
[1]
[1] LENG Xiao-Wei(冷小威), LIU Jing-Xiao(刘敬肖), SHI Fei (史非), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(10):1791-1796
-
[2]
[2] GAO Qing-Fu(高庆福), ZHANG Chang-Rui(张长瑞), FENG Jian(冯坚), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(10):1758-1763
-
[3]
[4] Chen K, Bao Z H, Du A, et al. Micropor. Mesopor. Mater., 2012, 149:16-24
-
[4]
[5] Lee J K, Gould G L. J. Sol-Gel Technol., 2007, 44:29-40
-
[5]
[6] Leventis N, Mulik S, Wang X, et al. J. Non-Cryst. Solids, 2008, 354:632-644
-
[6]
[7] Cui S, Cheng W W, Shen X D, et al. Energy Environ. Sci., 2011, 4(6):2070-2074
-
[7]
[8] Lamb R N, Ngamsom B, Trimm D L, et al. Appl. Catal., 2004, 268:43-50
-
[8]
[9] Okorn M, Nitikon W, Joongjai P, et al. Mater. Chem. Phys., 2008, 111:431-437
-
[9]
[10] Meador M A B, Weber A S, Hindi A, et al. ACS Appl. Mater., 2009, 1:894-906
-
[10]
[11] Kistler S S. Nature, 1931, 127:741-742
-
[11]
[12] Tatsuro H, Toshihiko O, Toyohiko S, et al. J. Non-Cryst. Solids, 2001, 291:187-198
-
[12]
[13] Stengl V, Bakardjieva S, Subrt J, et al. Micropor. Mesopor. Mater., 2006, 91(1-3):1-6
-
[13]
[14] Mejri I, Younes M K, Ghorbel A, et al. J Porous Mater., 2010, 17:545-551
-
[14]
[15] Hernandez C, Pierre A C. J. Sol-Gel Sci. Technol., 2001, 20: 227-243
-
[15]
[16] Yao N, Cao S L, Yeung K L. Micropor. Mesopor. Mater., 2009, 117:570-579
-
[16]
[17] Lee S L, Nur H, Hamdan H. Catal. Lett., 2009, 132:28-33
-
[17]
[18] Deng Z, Wang J, Zhang Y, et al. Nanostruct. Mater., 2000, 11(8):1313-1318
-
[18]
[19] Li C W, Guo S C. Carbon, 2000, 38:1499-1524
-
[19]
[20] Li C W, Reichenauer G, Fricke J. Carbon, 2002, 40:2955-2959
-
[20]
[21] Zhong Y, Kong Y, Shen X D, et al. Micropor. Mesopor. Mater., 2013, 172:182-189
-
[21]
[22] ZHAO Nan(赵南), FENG Jian(冯坚), JIANG Yong-Gang(姜 勇刚), et al. Aerosp. Mater. Technol.(宇航材料工艺), 2010, 5:10-14
-
[22]
[23] Toshihiko O, Kiho N, Koji W, et al. J. Non-Cryst. Solids, 2007, 353:2436-2442
-
[23]
[24] LIU Guang-Wu(刘光武), ZHOU Bin(周斌), NI Xing-Yuan (倪星元), et al. J. Tongji Univ.(同济大学学报), 2013, 41(7): 1078-1083
-
[24]
[25] GAN Li-Hua(甘礼华), LI Guang-Ming(李光明), YUE Tian-Yi(岳天仪), et al. Acta Phys.-Chim. Sin.(物理化学学报), 1999, 15(7):588-592
-
[25]
[26] KONG Yong(孔勇), ZHONG Ya(仲亚), SHEN Xiao-Dong(沈 晓冬), et al. J. Nanjing Univ. Tech.(南京工业大学学报), 2012, 34(4):6-10
-
[26]
[27] Aravind P R, Mukundan P, Pillai P K, et al. Micropor. Mesopor. Mater., 2006, 96:14-20
-
[27]
[28] FENG Jian(冯坚), GAO Qing-Fu(高庆福), FENG Jun-Zong (冯军宗), et al. J. Nat. Univ. Def. Tech.(国防科技大学学 报), 2010, 32(1):40-44
-
[28]
[29] Kim S M, Lee Y J, Jun K W, et al. Mater. Chem. Phys., 2007, 104:56-61
-
[29]
[30] ZHOU Jie-Jie(周洁洁), CHEN Xiao-Hong(陈晓红), SONG Huai-He(宋怀河), et al. Bull. Chin. Ceram. Soc.(硅酸盐导 报), 2010, 29(5):1002-1006
-
[30]
[31] Shewale P M, Rao A V, Rao AP, et al. J. Sol-Gel Sci. Technol., 2009, 49:285-292
-
[1]
-
-
[1]
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
Shasha Ma , Zujin Yang , Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008
-
[4]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[5]
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
-
[6]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[7]
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
-
[8]
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
-
[9]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[10]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[11]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[12]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[13]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[14]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[15]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[20]
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(359)
- HTML views(27)