Citation: YAN Qin, XIAO Shou-Jun. In-situ Growth of DNA Nanotubes from Functionalized Patterns of Poly(PEGMA) Brushes on Silicon Surface[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 741-748. doi: 10.11862/CJIC.2014.134 shu

In-situ Growth of DNA Nanotubes from Functionalized Patterns of Poly(PEGMA) Brushes on Silicon Surface

  • Corresponding author: XIAO Shou-Jun, 
  • Received Date: 23 July 2013
    Available Online: 18 November 2013

    Fund Project: 国家自然科学基金(No.91027019)资助项目。 (No.91027019)

  • Interfacing "top-down" with "bottom-up" methods to fabricate micro-and nano-devices are one target in nano-science and nano-technology presently. Herein we demonstrate the combination of photolithography and self-assembly to grow DNA nanotubes on functionalized patterns of poly(poly(ethylene glycol)monomethacrylate) brushes grafted from a silicon chip surface (Si-g-Poly(PEGMA)). On the silicon surface, first, the bromoisobutyryl group as the polymerization initiator was introduced through hydrosilylation, then poly(PEGMA) brushes were grown in-situ by Surface Initiated Atom Transfer Radical Polymerization (SI-ATRP), NHS(succinimidyl)-ester was generated on photolithographied poly(PEGMA) patterns and finally six-helix DNA tubes were immobilized and grown in-situ on these patterns. Multiple transmission-reflection infrared spectroscopy (MTR-IR), gel electrophoresis, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were used to monitor the whole process, which confirmed the feasibility of DNA self-assembly on the functionalized patterns of a silicon chip.
  • 加载中
    1. [1]

      [1] Gates B D, Xu Q B, Stewart M, et al. Chem. Rev., 2005, 105: 1171-1196

    2. [2]

      [2] Chen Y, Pepin A. Electrophoresis, 2001, 22:187-207

    3. [3]

      [3] Whitesides G M, Mathias J P, Seto C T. Science, 1991, 254: 1312-1319

    4. [4]

      [4] Zhang S. Nat. Biotechnol., 2003, 21:1171-1178

    5. [5]

      [5] Wilner O I, Willner I. Chem. Rev., 2012, 112:2528-2556

    6. [6]

      [6] Seeman N C. Nature, 2003, 421:33-37

    7. [7]

      [7] Rothemund P W, Ekani-Nkodo A, Winfree E, et al. J. Am. Chem. Soc., 2004, 126:16344-16352

    8. [8]

      [8] Ma Y, Zheng H, Wang C, et al. J. Am. Chem. Soc., 2013, 135:2959-2962

    9. [9]

      [9] Winfree E, Liu F, Wenzler L A, et al. Nature, 1998, 394:539 -544

    10. [10]

      [10] Rothemund P. Nature, 2006, 440:297-302

    11. [11]

      [11] Lin C, Liu Y, Yan H. Biochemistry, 2009, 48:1663-1674

    12. [12]

      [12] Chung S W, Ginger D S, Morales M W, et al. Small, 2005, 1: 64-69

    13. [13]

      [13] Ding B Q, Wu H, Xu W, et al. Nano Lett., 2010, 10:5065-5069

    14. [14]

      [14] Lin C, Ke Y, Liu Y, et al. Angew. Chem. Int. Ed., 2007, 46: 6089-6092

    15. [15]

      [15] Zhang G J, Tanii T, Funatsu T, et al. Chem. Commun., 2004, 7:786-787

    16. [16]

      [16] Hamada S, Murata S. Angew. Chem. Int. Ed., 2009, 48:6820 -6823

    17. [17]

      [17] Sarveswaran K, Hu W, Huber P W, et al. Langmuir, 2006, 22:11279-11283

    18. [18]

      [18] Sun X, Ko S H, Zhang C. J. Am. Chem. Soc., 2009, 131: 13248-13249

    19. [19]

      [19] Mathieu F, Liao S, Kopatsch J. Nano Lett., 2005, 5:661-665

    20. [20]

      [20] Kuzuya A, Wang R, Sha R. Nano Lett., 2007, 7:1757-1763

    21. [21]

      [21] Liu H B, Venkataraman N V, Bauert T E. J. Phys. Chem. A, 2008, 112:12372-12377

    22. [22]

      [22] Liu X, Liu H B, Guo P F, et al. Phys. Status Solid A, 2011, 208:1462-1470

    23. [23]

      [23] Liu X, Zheng H N, Xiao S J, et al. Surf. Sci., 2011, 605: 1106-1113

    24. [24]

      [24] Liu X, Zheng H N, Xiao S J, et al. J. Colloid Interface Sci., 2011, 358:116-122

    25. [25]

      [25] Wang C E, Yan Q, Xiao S J, et al. Langmuir, 2011, 27: 12058-12068

    26. [26]

      [26] Xu F J, Liu L Y, Yang W T, et al. Biomacromolecules, 2009, 10:1665-1674

    27. [27]

      [27] Xu D, Yu W H, Kang E T, et al. J. Colloid Interface Sci., 2004, 279:78-87

    28. [28]

      [28] Chen L, Chen Z T, Xiao S J, et al. Lab. Chip., 2009, 9:756-760

    29. [29]

      [29] Qiao Y, Wang D, Buriak J M. Nano Lett., 2007, 7:464-469

    30. [30]

      [30] Buriak J M. J. Am. Chem. Soc., 2005, 127:8932-8933

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    10. [10]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    11. [11]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    12. [12]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    19. [19]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(0)
  • Abstract views(176)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return