Citation: SONG Jian-Jun, SHAO Guang-Jie, ZHAO Jian-Wei, MA Zhi-Peng, SONG Wei, LIU Shuang, WANG Cai-Xia. First-Principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 615-620. doi: 10.11862/CJIC.2014.104 shu

First-Principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries

  • Received Date: 3 May 2013
    Available Online: 8 November 2013

    Fund Project: 河北省大学自然科学关键研究项目基金(No.ZH2011228)/河北省自然科学基金[No.B201220369]资助项目。 (No.ZH2011228)

  • The electronic structure and diffusion barriers of lithium ions in pure LiFePO4 and doped LiFe1-xMoxPO4(x=0.005, 0.01, 0.015, 0.02, and 0.025) have been calculated based on the first-principle density functional theory (DFT). The calculated results show that the LiFe0.99Mo0.01PO4 has the largest interplanar distance of (101) crystal plane, suggesting the widest Li ion diffusion pathway in [010] direction. Pure LiFePO4 has diffusion energy barrier of 4.289 eV for lithium ions, while the LiFe0.99Mo0.01PO4 has lower diffusion energy barrier of 4.274 eV. The calculated diffusion coefficient of LiFe0.99Mo0.01PO4 is 1.79 times as large as that of pure LiFePO4, indicating that Mo doping is beneficial to lithium ion diffusivity of LiFePO4. The intensity of the partial density of states (PDOS) near the bottom of conduction bands (CBs) becomes stronger after doping with Mo. According to the analysis above, Mo doping is beneficial to improve the electronic conductivity and lithium ion diffusivity of LiFePO4. Lithium ion diffusivity plays more important roles than electronic conductivity on improving the electrochemical performance of LiFePO4 by doping with Mo.
  • 加载中
    1. [1]

      [1] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194

    2. [2]

      [2] Wang J, Sun X. Energy & Environ. Sci., 2012,5(1):5163-5185

    3. [3]

      [3] Nishimura S, Kobayashi G, Ohoyama K, et al. Nature Mater.,2008,7(9):707-711

    4. [4]

      [4] Yuan L X, Wang Z H, Zhang W X, et al. Energy & Environ. Sci., 2011,4(2):269-284

    5. [5]

      [5] Sides C R, Croce F, Young V Y, et al. Electrochem. Solid-State Lett., 2005,8(9):A484-A487

    6. [6]

      [6] Hu Y S, Guo Y G, Dominko R, et al. Adv. Mater., 2007,19 (15):1963-1966

    7. [7]

      [7] Mi C H, Cao Y X, Zhang X G, et al. Powder Technol., 2008,181(3):301-306

    8. [8]

      [8] Park K S, Son J T, Chung H T, et al. Solid State Commun., 2004,129(5):311-314

    9. [9]

      [9] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069

    10. [10]

      [10] Delacourt C, Poizot P, LeVasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355

    11. [11]

      [11] Herle P S, Ellis B, Coombs N, et al. Nature Mater., 2004,3 (3):147-152

    12. [12]

      [12] Yin X, Huang K, Liu S, et al. J. Power Sources, 2010,195 (13):4308-4312

    13. [13]

      [13] Wang G, Cheng Y, Yan M, et al. J. Solid State Electrochem., 2006,11(4):457-462

    14. [14]

      [14] Yao J, Konstantinov K, Wang G X, et al. J. Solid State Electrochem., 2005,11(2):177-185

    15. [15]

      [15] Wang D, Li H, Shi S, et al. Electrochim. Acta, 2005,50 (14):2955-2958

    16. [16]

      [16] Hsu K F, Tsay S Y, Hwang, B J. J. Power Sources, 2005, 146(1/2):529-533

    17. [17]

      [17] Wang G X, Bewlay S L, Konstantinov K, et al. Electrochim. Acta, 2004,50(2/3):443-447

    18. [18]

      [18] Zhuang D, Zhao X, Xie J, et al. Acta Physico-Chim. Sinica, 2006,22(7):840-844

    19. [19]

      [19] Ceder G, Chiang Y M, Sadoway D R, et al. Nature, 1998, 392(6677):694-696

    20. [20]

      [20] Wolverton C, Zunger A. Phys. Rev. Lett., 1998,81(3):606-609

    21. [21]

      [21] Hou X, Hu S, Li W, et al. Chin. Sci. Bull., 2008,53(11): 1763-1767

    22. [22]

      [22] Xu F W, Xue W D, Wang M X, et al. J. At. Mol. Phys., 2007:128-132

    23. [23]

      [23] Ma Z, Shao G, Wang G, et al. Ionics, 2013,19(3):437-443

    24. [24]

      [24] Perdew J P, Jackson K A, Pederson M R, et al. Phys. Rev. B, 1992,46(11):6671-6687

    25. [25]

      [25] Shi S, Ouyang C, Xiong Z, et al. Phys. Rev. B, 2005,71 (14):DOI:10.1103/PhysRevB.71.144409

    26. [26]

      [26] Vanderbilt D. Phys. Rev. B, 1990,41(11):7892-7895

    27. [27]

      [27] Brutti S, Hassoun J, Scrosati B, et al. J. Power Sources, 2012,217:72-76

    28. [28]

      [28] Streltsov V A, Belokoneva E L, Tsirelson V G, et al. Acta Crys. B: Struct. Sci., 1993,B49:147-153

    29. [29]

      [29] Ouyang C, Shi S, Wang Z X, et al. Phys. Rev. B, 2004,69 (10): DOI:10.1103/PhysRevB.104303

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    6. [6]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    7. [7]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    10. [10]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    11. [11]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    12. [12]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    13. [13]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(494)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return