Citation:
SONG Jian-Jun, SHAO Guang-Jie, ZHAO Jian-Wei, MA Zhi-Peng, SONG Wei, LIU Shuang, WANG Cai-Xia. First-Principle Calculation of LiFe1-xMoxPO4 as Cathode Material for Rechargeable Lithium Batteries[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(3): 615-620.
doi:
10.11862/CJIC.2014.104
-
The electronic structure and diffusion barriers of lithium ions in pure LiFePO4 and doped LiFe1-xMoxPO4(x=0.005, 0.01, 0.015, 0.02, and 0.025) have been calculated based on the first-principle density functional theory (DFT). The calculated results show that the LiFe0.99Mo0.01PO4 has the largest interplanar distance of (101) crystal plane, suggesting the widest Li ion diffusion pathway in [010] direction. Pure LiFePO4 has diffusion energy barrier of 4.289 eV for lithium ions, while the LiFe0.99Mo0.01PO4 has lower diffusion energy barrier of 4.274 eV. The calculated diffusion coefficient of LiFe0.99Mo0.01PO4 is 1.79 times as large as that of pure LiFePO4, indicating that Mo doping is beneficial to lithium ion diffusivity of LiFePO4. The intensity of the partial density of states (PDOS) near the bottom of conduction bands (CBs) becomes stronger after doping with Mo. According to the analysis above, Mo doping is beneficial to improve the electronic conductivity and lithium ion diffusivity of LiFePO4. Lithium ion diffusivity plays more important roles than electronic conductivity on improving the electrochemical performance of LiFePO4 by doping with Mo.
-
-
-
[1]
[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194
-
[2]
[2] Wang J, Sun X. Energy & Environ. Sci., 2012,5(1):5163-5185
-
[3]
[3] Nishimura S, Kobayashi G, Ohoyama K, et al. Nature Mater.,2008,7(9):707-711
-
[4]
[4] Yuan L X, Wang Z H, Zhang W X, et al. Energy & Environ. Sci., 2011,4(2):269-284
-
[5]
[5] Sides C R, Croce F, Young V Y, et al. Electrochem. Solid-State Lett., 2005,8(9):A484-A487
-
[6]
[6] Hu Y S, Guo Y G, Dominko R, et al. Adv. Mater., 2007,19 (15):1963-1966
-
[7]
[7] Mi C H, Cao Y X, Zhang X G, et al. Powder Technol., 2008,181(3):301-306
-
[8]
[8] Park K S, Son J T, Chung H T, et al. Solid State Commun., 2004,129(5):311-314
-
[9]
[9] Choi D, Kumta P N. J. Power Sources, 2007,163(2):1064-1069
-
[10]
[10] Delacourt C, Poizot P, LeVasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355
-
[11]
[11] Herle P S, Ellis B, Coombs N, et al. Nature Mater., 2004,3 (3):147-152
-
[12]
[12] Yin X, Huang K, Liu S, et al. J. Power Sources, 2010,195 (13):4308-4312
-
[13]
[13] Wang G, Cheng Y, Yan M, et al. J. Solid State Electrochem., 2006,11(4):457-462
-
[14]
[14] Yao J, Konstantinov K, Wang G X, et al. J. Solid State Electrochem., 2005,11(2):177-185
-
[15]
[15] Wang D, Li H, Shi S, et al. Electrochim. Acta, 2005,50 (14):2955-2958
-
[16]
[16] Hsu K F, Tsay S Y, Hwang, B J. J. Power Sources, 2005, 146(1/2):529-533
-
[17]
[17] Wang G X, Bewlay S L, Konstantinov K, et al. Electrochim. Acta, 2004,50(2/3):443-447
-
[18]
[18] Zhuang D, Zhao X, Xie J, et al. Acta Physico-Chim. Sinica, 2006,22(7):840-844
-
[19]
[19] Ceder G, Chiang Y M, Sadoway D R, et al. Nature, 1998, 392(6677):694-696
-
[20]
[20] Wolverton C, Zunger A. Phys. Rev. Lett., 1998,81(3):606-609
-
[21]
[21] Hou X, Hu S, Li W, et al. Chin. Sci. Bull., 2008,53(11): 1763-1767
-
[22]
[22] Xu F W, Xue W D, Wang M X, et al. J. At. Mol. Phys., 2007:128-132
-
[23]
[23] Ma Z, Shao G, Wang G, et al. Ionics, 2013,19(3):437-443
-
[24]
[24] Perdew J P, Jackson K A, Pederson M R, et al. Phys. Rev. B, 1992,46(11):6671-6687
-
[25]
[25] Shi S, Ouyang C, Xiong Z, et al. Phys. Rev. B, 2005,71 (14):DOI:10.1103/PhysRevB.71.144409
-
[26]
[26] Vanderbilt D. Phys. Rev. B, 1990,41(11):7892-7895
-
[27]
[27] Brutti S, Hassoun J, Scrosati B, et al. J. Power Sources, 2012,217:72-76
-
[28]
[28] Streltsov V A, Belokoneva E L, Tsirelson V G, et al. Acta Crys. B: Struct. Sci., 1993,B49:147-153
-
[29]
[29] Ouyang C, Shi S, Wang Z X, et al. Phys. Rev. B, 2004,69 (10): DOI:10.1103/PhysRevB.104303
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
-
[3]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[4]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[5]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[6]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[7]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[8]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[9]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[10]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[11]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[12]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[13]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[14]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[15]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[16]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[17]
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
-
[18]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024
-
[19]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[20]
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(382)
- HTML views(44)