Citation: FAN Ying-Hua, LUO Qin, LIU Gui-Xia, WANG Jin-Xian, DONG Xiang-Ting, YU Wen-Sheng, SUN De. Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 627-632. doi: 10.11862/CJIC.2014.093 shu

Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials

  • Received Date: 26 August 2013
    Available Online: 28 November 2013

    Fund Project: 国家自然科学基金(NO.51072026) (NO.51072026)吉林省科技发展计划项目(NO.20130206002GX)资助项目。 (NO.20130206002GX)

  • SnS2 nanomaterials with different morphologies were synthesized by hydrothermal method using different surfactants and different sulfur sources. The influence of reaction condition on morphology and property was discussed. The structure and composition of the as-prepared SnS2 nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic performance of the as-synthesized SnS2 was evaluated by catalytic degradation of Rhodamine B (RhB). The results show that the surfactant and sulfur source play an important role in the structure and morphology of SnS2. When the molar ratio of Sn4+ to Surfactant is 1:1, the samples are all pure hexagonal phase SnS2. The obtained SnS2 nanoplates employing sodium citrate as surfactant and thiourea as sulfur source show the best photocatalytic performance and the larger BET surface area.
  • 加载中
    1. [1]

      [1] Tsuji I, Kato H, Kudo A. Chem. Mater., 2006,18(7):1969-1975

    2. [2]

      [2] Du W M, Deng D H, Han Z T, et al. CrystEngComm., 2011, 13:2071-2076

    3. [3]

      [3] Kale B B, Baeg J O, Lee S M, et a1. Adv. Funct. Mater., 2006,16(10):1349-1354

    4. [4]

      [4] Zhang Y C, Du Z N, Li K W, et al. Sep. Purif. Technol., 2011, 81:101-107

    5. [5]

      [5] Liu H, Su Y, Chen P, et al. J. Mol. Catal. A: Chem., 2013, 378:285-292

    6. [6]

      [6] Zhang Y C, Du Z N, Li S Y, et al. Appl. Catal. B: Environ., 2010,95:153-159

    7. [7]

      [7] Zhang Y C, Li J, Zhang M, et al. Environ. Sci. Technol., 2011,45(21):9324-9331

    8. [8]

      [8] Lei Y Q, Song S Y, Fan W Q, et al. J. Phys. Chem., 2009, 113(4):1280-1285

    9. [9]

      [9] Hupka J, Zaleska A, Janczarek M, et al. Soil and Water Pollution Monitoring, Protection and Remediation NATO Science Series, 2006,69:351-367

    10. [10]

      [10] Arora S K, Patel D H, Agarwal M K. J. Mater. Sci., 1994,29 (15):3979-3983

    11. [11]

      [11] Jiang T, Lough A, Ozin G A, et al. J. Mater. Chem., 1998,8: 721-732

    12. [12]

      [12] Lucena R, Fresno F, Conesa J C. Appl. Catal. A: Gen., 2012,415-416:111-117

    13. [13]

      [13] Li X, Zhu J, Li H X. Appl. Catal. B: Environ., 2012,123-124:174-181

    14. [14]

      [14] Liu X H, Bai H X. Powder Technol., 2013,237:610-615

    15. [15]

      [15] Cai P, Ma D K, Liu Q C, et al. J. Mater. Chem. A, 2013,1: 5217-5223

    16. [16]

      [16] Zhou X L, Zhou T F, Hu J C, et al. CrystEngCommun., 2012,14:5627-5633

    17. [17]

      [17] Luo B, Fang Y, Wang B, et al. Energy Environ., 2012,5: 5226-5230

    18. [18]

      [18] Du Y P, Yin Z Y, Rui X H, et al. Nanoscale, 2013,5:1456-1459

    19. [19]

      [19] Mukaibo H, Yoshizawa A, Momma T, et al. J. Power Sources, 2003,119-121:60-63

    20. [20]

      [20] Deshpande N G, Sagade A A, Gudage Y G, et al. J. Alloys Compd., 2007,436(1-2):421-426

    21. [21]

      [21] Reiss P, Couderc E, Girolamo J D, et al. Nanoscale, 2011,3: 446-489

    22. [22]

      [22] Chao J F, Xu X, Huang H T, et al. CrystEngCommun., 2012,14:6654-6658

    23. [23]

      [23] Panda S K, Antonakos A, Liarokapis E, et al. Mater. Res. Bull., 2007,42(3):576-583

    24. [24]

      [24] Lin Y T, Shi J B, Chen Y C, et al. Nanoscale Res. Lett., 2009,4(7):694-698

    25. [25]

      [25] Zhu Y Q, Chen Y Q, Liu L Z. J. Cryst. Growth, 2011,328 (1):70-73

    26. [26]

      [26] Shi W D, Huo L H, Wang H S, et al. Nanotechnology, 2006,17:2918-2924

    27. [27]

      [27] He M, Yuan L X, Huang Y H. RSC Adv., 2013,3:3374-3383

  • 加载中
    1. [1]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Wei Li Han Xu Chuancan Gu Ziyan Liu Yan'an Li Yan Geng . Digital Experiment on Nano-COF Materials Modulating Intracellular Ca²⁺ Concentration to Enhance Photodynamic Therapy. University Chemistry, 2026, 41(1): 354-362. doi: 10.12461/PKU.DXHX202506001

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    14. [14]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    15. [15]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(1222)
  • HTML views(342)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return