Citation:
FAN Ying-Hua, LUO Qin, LIU Gui-Xia, WANG Jin-Xian, DONG Xiang-Ting, YU Wen-Sheng, SUN De. Hydrothermal Synthesis and Photocatalysis of SnS2 Nanomaterials[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(3): 627-632.
doi:
10.11862/CJIC.2014.093
-
SnS2 nanomaterials with different morphologies were synthesized by hydrothermal method using different surfactants and different sulfur sources. The influence of reaction condition on morphology and property was discussed. The structure and composition of the as-prepared SnS2 nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) surface area analysis. The photocatalytic performance of the as-synthesized SnS2 was evaluated by catalytic degradation of Rhodamine B (RhB). The results show that the surfactant and sulfur source play an important role in the structure and morphology of SnS2. When the molar ratio of Sn4+ to Surfactant is 1:1, the samples are all pure hexagonal phase SnS2. The obtained SnS2 nanoplates employing sodium citrate as surfactant and thiourea as sulfur source show the best photocatalytic performance and the larger BET surface area.
-
-
-
[1]
[1] Tsuji I, Kato H, Kudo A. Chem. Mater., 2006,18(7):1969-1975
-
[2]
[2] Du W M, Deng D H, Han Z T, et al. CrystEngComm., 2011, 13:2071-2076
-
[3]
[3] Kale B B, Baeg J O, Lee S M, et a1. Adv. Funct. Mater., 2006,16(10):1349-1354
-
[4]
[4] Zhang Y C, Du Z N, Li K W, et al. Sep. Purif. Technol., 2011, 81:101-107
-
[5]
[5] Liu H, Su Y, Chen P, et al. J. Mol. Catal. A: Chem., 2013, 378:285-292
-
[6]
[6] Zhang Y C, Du Z N, Li S Y, et al. Appl. Catal. B: Environ., 2010,95:153-159
-
[7]
[7] Zhang Y C, Li J, Zhang M, et al. Environ. Sci. Technol., 2011,45(21):9324-9331
-
[8]
[8] Lei Y Q, Song S Y, Fan W Q, et al. J. Phys. Chem., 2009, 113(4):1280-1285
-
[9]
[9] Hupka J, Zaleska A, Janczarek M, et al. Soil and Water Pollution Monitoring, Protection and Remediation NATO Science Series, 2006,69:351-367
-
[10]
[10] Arora S K, Patel D H, Agarwal M K. J. Mater. Sci., 1994,29 (15):3979-3983
-
[11]
[11] Jiang T, Lough A, Ozin G A, et al. J. Mater. Chem., 1998,8: 721-732
-
[12]
[12] Lucena R, Fresno F, Conesa J C. Appl. Catal. A: Gen., 2012,415-416:111-117
-
[13]
[13] Li X, Zhu J, Li H X. Appl. Catal. B: Environ., 2012,123-124:174-181
-
[14]
[14] Liu X H, Bai H X. Powder Technol., 2013,237:610-615
-
[15]
[15] Cai P, Ma D K, Liu Q C, et al. J. Mater. Chem. A, 2013,1: 5217-5223
-
[16]
[16] Zhou X L, Zhou T F, Hu J C, et al. CrystEngCommun., 2012,14:5627-5633
-
[17]
[17] Luo B, Fang Y, Wang B, et al. Energy Environ., 2012,5: 5226-5230
-
[18]
[18] Du Y P, Yin Z Y, Rui X H, et al. Nanoscale, 2013,5:1456-1459
-
[19]
[19] Mukaibo H, Yoshizawa A, Momma T, et al. J. Power Sources, 2003,119-121:60-63
-
[20]
[20] Deshpande N G, Sagade A A, Gudage Y G, et al. J. Alloys Compd., 2007,436(1-2):421-426
-
[21]
[21] Reiss P, Couderc E, Girolamo J D, et al. Nanoscale, 2011,3: 446-489
-
[22]
[22] Chao J F, Xu X, Huang H T, et al. CrystEngCommun., 2012,14:6654-6658
-
[23]
[23] Panda S K, Antonakos A, Liarokapis E, et al. Mater. Res. Bull., 2007,42(3):576-583
-
[24]
[24] Lin Y T, Shi J B, Chen Y C, et al. Nanoscale Res. Lett., 2009,4(7):694-698
-
[25]
[25] Zhu Y Q, Chen Y Q, Liu L Z. J. Cryst. Growth, 2011,328 (1):70-73
-
[26]
[26] Shi W D, Huo L H, Wang H S, et al. Nanotechnology, 2006,17:2918-2924
-
[27]
[27] He M, Yuan L X, Huang Y H. RSC Adv., 2013,3:3374-3383
-
[1]
-
-
-
[1]
Jingjing Liu , Aoqi Wei , Hao Zhang , Shuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185
-
[2]
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
-
[3]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[4]
Wei Li , Han Xu , Chuancan Gu , Ziyan Liu , Yan'an Li , Yan Geng . Digital Experiment on Nano-COF Materials Modulating Intracellular Ca²⁺ Concentration to Enhance Photodynamic Therapy. University Chemistry, 2026, 41(1): 354-362. doi: 10.12461/PKU.DXHX202506001
-
[5]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[6]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
-
[7]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[8]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[9]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[13]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[14]
Qinhui Guan , Yuhao Guo , Na Li , Jing Li , Tingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
-
[16]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
-
[17]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
-
[20]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1222)
- HTML views(342)
Login In
DownLoad: