Citation: ZHANG Yu-Xing, CHEN Jian-Ming, SONG Yun-Hua. Two-Step Preparation of Magnesium Hydroxide Flame Retardant from Magnesium Oxide[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 860-866. doi: 10.11862/CJIC.2014.091 shu

Two-Step Preparation of Magnesium Hydroxide Flame Retardant from Magnesium Oxide

  • Corresponding author: SONG Yun-Hua, 
  • Received Date: 20 September 2013
    Available Online: 16 November 2013

    Fund Project: 中国海洋局课题(No.20100521) (No.20100521)国家自然科学基金(No.20676006)资助项目。 (No.20676006)

  • The flame retardant magnesium hydroxide powder was prepared by two-step method using magnesium oxide which was calcined by magnesium chloride as raw material. Two-step method consists of hydrating and hydrothermal reaction process. The effects of hydration time, hydrothermal reaction time and temperature, and the concentration of sodium hydroxide on the morphology and structure of magnesium hydroxide had been studied. Special attention was given to the obtaining of platelet-shaped, high purity and highly-dispersible powders. The characterization of magnesium hydroxide powder was investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and nitrogen absorption BET analyzer. It is indicated that magnesium oxide has been completely hydrated after 3h. As the hydrothermal temperature and time increased, crystal size became larger and crystalline dispersion became remarkable. Additionally, increasing the hydrothermal additives concentration of sodium hydroxide can significantly improve the degree of crystallization crystals, reduce the microscopic internal strain of crystal, and enhance powder dispersibility.
  • 加载中
    1. [1]

      [1] Rothon R N, Hornsby P R. Polym. Degrad. Stab., 1996, 54: 383-385

    2. [2]

      [2] Yan H, Zhang X, Wu J, et al. Powder Technol., 2008, 188: 128-132

    3. [3]

      [3] Henrist C, Mathieu J P, Vogels C, et al. J. Cryst. Growth, 2003, 249:321-330

    4. [4]

      [4] XIANG Lan(向兰), WU Hui-Jun(吴会军), JIN Yong-Cheng (金永成), et al. Sea-Lake Salt and Chemical Industry(海湖 盐与化工), 2001, 30(5):1-4

    5. [5]

      [5] Holloway L R. Rubber Chemistry and Technology, 1988, 61: 186-193

    6. [6]

      [6] Utamapanya S, Klabunde K J, Schlup J R. Chem. Mater., 1991, 3:175-181

    7. [7]

      [7] Hsu J P, Nacu A. Coll. Surf. A, 2005, 262:220-231

    8. [8]

      [8] Yu J C, Xu A, Zhang L, et al. J. Phys. Chem. B, 2004, 108: 64-70

    9. [9]

      [9] Kitamura A, Onizuka K, Tanaka K. Taikabutsu Overseas, 1996, 16:3-11

    10. [10]

      [10] JIN Yong-Cheng(金永成), XIANG Lan(向兰), JIN Yong(金 涌). Chinese J. Inorg. Chem.(无机化学学报), 2003, 19(8): 837-842

    11. [11]

      [11] Giorgi R, Bozzi C, Dei L, et al. Langmuir, 2005, 21:8495-8501

    12. [12]

      [12] XIANG Lan(向兰), JIN Yong-Cheng(金永成), JIN Yong(金 涌). The Chinese Journal of Process Engineering(过程工程 学报), 2003, 3(2):116-120

    13. [13]

      [13] Amaral L F, Oliveira I R, Salomao R, et al. Ceramics International, 2010, 36:1047-1054

    14. [14]

      [14] Chen J, Lin L, Song Y, et al. J. Cryst. Gr., 2009, 311:2405-2408

    15. [15]

      [15] WANG Ying-Hua(王英华). Foundation of X-ray Technology (X光衍射技术基础). Beijing: Atomic Energy Press, 1993: 260-262

    16. [16]

      [16] Van Der Merwe E M, Strydom C A. J. Therm. Ana., 2006, 84:467-471

    17. [17]

      [17] Rocha S D F, Mansur M B, Ciminelli V S T. J. Chem. Tech., 2004, 79:816-821

    18. [18]

      [18] Longo E, Varela J A, Senapeschi A N, et al. Langmuir, 1985, 1:456-461

    19. [19]

      [19] Hickey L, Kloprogge J T, Frost R L. J. Mater. Sc., 2000, 35: 4347-4355

    20. [20]

      [20] FENG Gang(冯刚), SUN Qing-Guo(孙庆国). Inorganic Chemicals Industry(无机盐工业), 2008, 40(4):15-18

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(291)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return