Citation: ZHANG Yu-Xing, CHEN Jian-Ming, SONG Yun-Hua. Two-Step Preparation of Magnesium Hydroxide Flame Retardant from Magnesium Oxide[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 860-866. doi: 10.11862/CJIC.2014.091 shu

Two-Step Preparation of Magnesium Hydroxide Flame Retardant from Magnesium Oxide

  • Corresponding author: SONG Yun-Hua, 
  • Received Date: 20 September 2013
    Available Online: 16 November 2013

    Fund Project: 中国海洋局课题(No.20100521) (No.20100521)国家自然科学基金(No.20676006)资助项目。 (No.20676006)

  • The flame retardant magnesium hydroxide powder was prepared by two-step method using magnesium oxide which was calcined by magnesium chloride as raw material. Two-step method consists of hydrating and hydrothermal reaction process. The effects of hydration time, hydrothermal reaction time and temperature, and the concentration of sodium hydroxide on the morphology and structure of magnesium hydroxide had been studied. Special attention was given to the obtaining of platelet-shaped, high purity and highly-dispersible powders. The characterization of magnesium hydroxide powder was investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and nitrogen absorption BET analyzer. It is indicated that magnesium oxide has been completely hydrated after 3h. As the hydrothermal temperature and time increased, crystal size became larger and crystalline dispersion became remarkable. Additionally, increasing the hydrothermal additives concentration of sodium hydroxide can significantly improve the degree of crystallization crystals, reduce the microscopic internal strain of crystal, and enhance powder dispersibility.
  • 加载中
    1. [1]

      [1] Rothon R N, Hornsby P R. Polym. Degrad. Stab., 1996, 54: 383-385

    2. [2]

      [2] Yan H, Zhang X, Wu J, et al. Powder Technol., 2008, 188: 128-132

    3. [3]

      [3] Henrist C, Mathieu J P, Vogels C, et al. J. Cryst. Growth, 2003, 249:321-330

    4. [4]

      [4] XIANG Lan(向兰), WU Hui-Jun(吴会军), JIN Yong-Cheng (金永成), et al. Sea-Lake Salt and Chemical Industry(海湖 盐与化工), 2001, 30(5):1-4

    5. [5]

      [5] Holloway L R. Rubber Chemistry and Technology, 1988, 61: 186-193

    6. [6]

      [6] Utamapanya S, Klabunde K J, Schlup J R. Chem. Mater., 1991, 3:175-181

    7. [7]

      [7] Hsu J P, Nacu A. Coll. Surf. A, 2005, 262:220-231

    8. [8]

      [8] Yu J C, Xu A, Zhang L, et al. J. Phys. Chem. B, 2004, 108: 64-70

    9. [9]

      [9] Kitamura A, Onizuka K, Tanaka K. Taikabutsu Overseas, 1996, 16:3-11

    10. [10]

      [10] JIN Yong-Cheng(金永成), XIANG Lan(向兰), JIN Yong(金 涌). Chinese J. Inorg. Chem.(无机化学学报), 2003, 19(8): 837-842

    11. [11]

      [11] Giorgi R, Bozzi C, Dei L, et al. Langmuir, 2005, 21:8495-8501

    12. [12]

      [12] XIANG Lan(向兰), JIN Yong-Cheng(金永成), JIN Yong(金 涌). The Chinese Journal of Process Engineering(过程工程 学报), 2003, 3(2):116-120

    13. [13]

      [13] Amaral L F, Oliveira I R, Salomao R, et al. Ceramics International, 2010, 36:1047-1054

    14. [14]

      [14] Chen J, Lin L, Song Y, et al. J. Cryst. Gr., 2009, 311:2405-2408

    15. [15]

      [15] WANG Ying-Hua(王英华). Foundation of X-ray Technology (X光衍射技术基础). Beijing: Atomic Energy Press, 1993: 260-262

    16. [16]

      [16] Van Der Merwe E M, Strydom C A. J. Therm. Ana., 2006, 84:467-471

    17. [17]

      [17] Rocha S D F, Mansur M B, Ciminelli V S T. J. Chem. Tech., 2004, 79:816-821

    18. [18]

      [18] Longo E, Varela J A, Senapeschi A N, et al. Langmuir, 1985, 1:456-461

    19. [19]

      [19] Hickey L, Kloprogge J T, Frost R L. J. Mater. Sc., 2000, 35: 4347-4355

    20. [20]

      [20] FENG Gang(冯刚), SUN Qing-Guo(孙庆国). Inorganic Chemicals Industry(无机盐工业), 2008, 40(4):15-18

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Shuting Zhuang Lida Zhao . Teaching through Research: A Comprehensive Experiment on Carbon Quantum Dots from Microplastic Waste. University Chemistry, 2025, 40(10): 217-224. doi: 10.12461/PKU.DXHX202412010

    3. [3]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    15. [15]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(0)
  • Abstract views(563)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return