Citation: WANG Hui, CHAI Zhi-Fang, WANG Dong-Qi*. Interactions between Humic Acids and Actinides:Recent Advances[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 37-52. doi: 10.11862/CJIC.2014.084 shu

Interactions between Humic Acids and Actinides:Recent Advances

  • Received Date: 9 October 2013
    Available Online: 28 October 2013

    Fund Project:

  • Recent advances on the experimental and computational studies of interactions between humic acids (HAs) and actinides are briefly reviewed. It appears that HAs are able to form coordination complexes with actinide cations (Ann+) mainly via their carboxylate groups, and as a consequence, influence the migration of Ann+. In geomedia, many factors may affect the interactions between HA and Ann+, including pH, ionic strength, mineral surfaces, among which the effect of pH is the most significant. In general, at low pH, HA may enhance the adsorption of Ann+ on the surface of minerals, while when pH is around or larger than7, HA plays an opposite role. In addition, HAs may reduce high valent oxidative actinide cations, and the reductivity originates from their quinoid and phenol groups. In those HAs with high presence of reduced sulfur, HAs may become more redox sensitive due to the participation of Sin the redox reactions. The paper is concluded with an outlook.
  • 加载中
    1. [1]

      [1] LIU Yuan-Fang (刘元方). J. Nucl. Radiochem.(核化学与放 射化学), 1990, 12(1):1-8

    2. [2]

      [2] LI Bing(李兵), ZHU Hai-Jun(朱海军), LIAO Jia-Li(廖家莉), et al. Chem. Res. Appl.(化学研究与应用), 2007, 19(12):1289-1295

    3. [3]

      [3] TAO Zu-Yi(陶祖贻), LU Chang-Qing(陆长青). J. Nucl. Rad-iochem(核化学与放射化学), 1992, 14(2):120-125

    4. [4]

      [4] GUO Liang-Tian(郭亮天), SHI Ying-Xia(史英霞). Radiat. Prot. Bull.(辐射防护通讯), 2003, 23(4):16-23

    5. [5]

      [5] LIU Qi-Feng(刘期凤), LIU Ning(刘宁), LIAO Jia-Li(廖家莉), et al. Chem. Res. Appl.(化学研究与应用), 2006, 18(5):465-471

    6. [6]

      [6] Sachs S, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 290 (1):17-29

    7. [7]

      [7] Stevenson F J. Humus Chemistry, Genesis, Composition, Reactions, 2nd edn.. New York: Wiley, 1994.

    8. [8]

      [8] Xia K, Weesner F, Bleam W F, et al. Soil Sci. Soc. Am. J., 1998, 62:1240-1246

    9. [9]

      [9] Diallo M S, Simpson A, Gassman P, et al. Environ. Sci. Technol., 2003, 37(9):1783-1793

    10. [10]

      [10] Carhart R E, Smith D H, Brown H, et al. J. Am. Chem. Soc., 1975, 97(20):5755-5762

    11. [11]

      [11] Smith D H, Gray N A B, Nourse J G, et al. Anal. Chim. Acta, 1981, 133(4):471-197

    12. [12]

      [12] Abe H, Okuyama T, Fujiwara F, et al. J. Chem. Inf. Comput. Sci., 1984, 24(4):220-229

    13. [13]

      [13] Kudo Y, Sasaki S. J. Chem. Inf. Comput. Sci., 1985, 25(3): 252-257

    14. [14]

      [14] Funatsu K, Miyabaski N, Sasaki S. J. Chem. Inf. Comput. Sci., 1988, 28(1):9-18

    15. [15]

      [15] Oshima T, Ishida Y, Sato K, et al. Anal. Chim. Acta, 1980, 122(2):95-102

    16. [16]

      [16] Bangov I P. J. Chem. Inf. Comput. Sci., 1994, 34(2):277-286

    17. [17]

      [17] Contreras M L, Rozas R, Valdivias R. J. Chem. Inf. Comput. Sci., 1994, 34(3):610-616

    18. [18]

      [18] Faulon J L, Vandenbroucke M, Drappier J M, et al. Adv. Org. Geochem., 1981, 16:981-993

    19. [19]

      [19] Faulon J L. J. Chem. Inf. Comput. Sci., 1994, 34(1):197-206

    20. [20]

      [20] Schluten H R, Schnitzer M. Naturwissenschaften, 1993, 80 (1):29-30

    21. [21]

      [21] Steelink, C. Humic Substances in Soil, Sediment, and Water, Aiken G R, McKnight D M, Wershaw R L, et al. Eds., New York: John Wiley, 1985:457-476

    22. [22]

      [22] Engebretson R R, von Wandruszka, R. Environ. Sci. Technol., 1994, 28(11):1934-1941

    23. [23]

      [23] Jansen S, Malaty S, Nwabara M, et al. Mater. Sci. Eng., 1996, C4(3):175-179

    24. [24]

      [24] Sein L T, Varnum J M, Jansen S A. Environ. Sci. Technol., 1999, 33(4):546-552

    25. [25]

      [25] Chiou C T, Porter P E, Schmedding D. Environ. Sci. Technol., 1983, 17(4):227-231

    26. [26]

      [26] Orlov D S. Humic Substances of Soils and General Theory of Humification; Russian Translation Series 111, A. A. Balkema: Brookfield, VT, 1995.

    27. [27]

      [27] Brown P A, Leenheer J A. Humic Substances in The Suwa-nnee River Georgia: Interactions, Properties, and Proposed Structures, USGS, Open-File Report 87-557; 311, 1989.

    28. [28]

      [28] Poerschman J, Kopinke F D. Environ. Sci. Technol., 2000, 35(6):1142-1148

    29. [29]

      [29] Diallo M S, Faulon J L, Goddard W A Ⅲ, et al. Humic Substances: Structures, Models and Functions; Davies. G, Ghabbour, E A, Eds., Cambridge: Royal Society of Chemistry, 2001:221

    30. [30]

      [30] Minofar B, Jungwirth P, R. Das M, et al. J. Phys. Chem. C, 2007, 111(23):8242-8247

    31. [31]

      [31] Benedetti M F, Milne C J, Kinniburgh D G, et al. Environ. Sei. Technol., 1995, 29(2):446-457

    32. [32]

      [32] ZENG Lei(曾蕾), YI Cheng(易诚), ZHOU Chong-Wen(周崇 文), et al. Res. Survey Environ.(资源调查与环境), 2010, 31 (2):136-143

    33. [33]

      [33] Schnitzer M. 12th International Congress of Soil Sci. India: New Delhi, 1982, 5:67-78

    34. [34]

      [34] Gamble D S, Marinsky J A, Langford C H. Ion Exchange and Sovent Extraction. Marinsky J A, Marcus Y, Ed., New York, 1985, 9:373

    35. [35]

      [35] Manning G S. Biophys. Chem., 1977, 7(2):95-102

    36. [36]

      [36] Lecomte M, Lacquement J. Clefs CEA, 2002, 46:13-17

    37. [37]

      [37] Artinger R, Marquardt C M, Kim J I, et al. Radiochim Acta, 2000, 88:609-612

    38. [38]

      [38] Artinger R, Rabung T, Kim J I, et al. J. Contam. Hydrol., 2002, 58:1-12

    39. [39]

      [39] Choppin G R. Radiochim. Acta, 1992, 58/59:113-120

    40. [40]

      [40] Kim J I. Handbook on the Physics and Chemistry of the Actinides. Freeman A J, Keller C, Eds., New York: Elsevier, 1986. Chap. 8

    41. [41]

      [41] Silva R J, Nitsche H. Radiochim. Acta, 1995, 70/71:377-396

    42. [42]

      [42] Schmeide K, Sachs S, Bernhard G. Sci. Total Environ., 2012, 419:116-123

    43. [43]

      [43] Sakuragi T, Sato S, Kozaki T, et al. Radiochim. Acta, 2004, 92:697-702

    44. [44]

      [44] Samadfam M, Jintoku T, Sato S, et al. Radiochim. Acta, 2000, 88:717-721

    45. [45]

      [45] Benes P, Stamberg K, Siroky L, et al. Radioanal. Nucl. Chem., 2002, 254(2):231-239

    46. [46]

      [46] Bruggeman C, Liu D J, Maes N. Radiochim. Acta, 2010, 98 (9-11):597-605

    47. [47]

      [47] Buda R A, Banik N L, Kratz J V. et al. Radiochim. Acta, 2008, 96:657-665

    48. [48]

      [48] Rabung T, Geckeis H, Kim J I, et al. Radiochim. Acta, 1998, 82:243-248

    49. [49]

      [49] Montavon G, Rabung T, Geckeis H, et al. Environ. Sci. Technol., 2004, 38(16):4312-4318

    50. [50]

      [50] Tao Z Y, Li W J, Zhang F M, et al. J. Colloid Interf. Sci., 2003, 265:221-226

    51. [51]

      [51] Liao J L, Liu N, Zhang D, et al. Nucl. Sci. & Technol., 2007, 18(5):287-293

    52. [52]

      [52] Geckeis H, Lutzenkirchen J, Polly R, et al. Chem. Rev., 2013, 113:1016-1062

    53. [53]

      [53] Tan X L, Chang P P, Fan Q H, et al. Colloid. Surf. A, 2008, 328:8-14

    54. [54]

      [54] Tan X L, Fan Q H, Wang X K, et al. Environ. Sci. Technol, 2009, 43(9):3115-3121

    55. [55]

      [55] Fan Q H, Shao D D, Lu Y, et al. Chem. Eng. J., 2009, 150: 188-195

    56. [56]

      [56] Ren X, Wang S, Yang S, et al. J. Radioanal. Nucl. Chem., 2010, 283:253-259

    57. [57]

      [57] XU Jun-Zheng(许君政), FAN Qiao-Hui(范桥辉), BAI Hong-Bin(白洪彬), et al. J. Nucl. Radiochem(核化学与放 射化学), 2009, 31(3):179-185

    58. [58]

      [58] Ghosh M, Schnitzer M. Soil Sci., 1980, 129:266-276

    59. [59]

      [59] Iskrenova-Tchoukova E, Kalinichev A G, Kirkpatrick R J. Langmuir, 2010, 26(20):15909-15919

    60. [60]

      [60] Sposito G. Surface Chemistry of Soils. New York: Oxford Unioersity Press, 1984.

    61. [61]

      [61] Gu B, Schmitt J, Chen Z, et al. Environ. Sci. Technol., 1994, 28(1):38-46

    62. [62]

      [62] DONG Wen-Ming(董文明), DU Jin-Zhou(杜金州), TAO Zu-Yi(陶祖贻). At. Energ. Sci. Technol.(原子能科学技术), 2000, 34(1):92-96

    63. [63]

      [63] SHI Ying-Xia(史英霞), GUO Liang-Tian(郭亮天). J. Nucl. Radiochem.(核化学与放射化学), 2003, 25(1):22-25

    64. [64]

      [64] Steudtner R, Sachs S, Schmeide K, et al. Radiochim. Acta, 2011, 99:687-692

    65. [65]

      [65] Plaschke M, Rothe J, Denecke M A, et al. AIP Conf. Proc., 2010, 1221:144-149

    66. [66]

      [66] Ivanov P, Griffiths T, Bryan N D, et al. J. Environ. Monit., 2012, 14:2968-2975

    67. [67]

      [67] Murphy R J, Lenhart J J, Honeyman B D. Colloids Surf. A, 1999, 157:47-62

    68. [68]

      [68] Lenhart J J, Honeyman B D. Geochim. Cosmochim. Acta, 1999, 63(19/20):2891-2901

    69. [69]

      [69] Payne T E, Davis J A, Waite T D. Radiochim. Acta, 1996, 74:239-243

    70. [70]

      [70] Moll W F Jr. Clays Clay Miner., 2001, 49(5):374-380

    71. [71]

      [71] Mermut A R, Cano A F. Clays Clay Miner., 2001, 49(5):381-386

    72. [72]

      [72] Chipera S J, Bish D L. Clays Clay Miner., 2001, 49(5):398-409

    73. [73]

      [73] Wu W. Clays Clay Miner., 2001, 49(5):446-452

    74. [74]

      [74] Madejová J, Komadel P. Clays Clay Miner., 2001, 49(5):410-432

    75. [75]

      [75] Kogel J E, Lewis S A. Clays Clay Miner., 2001, 49(5):387-392

    76. [76]

      [76] Borden D, Giese R F. Clays Clay Miner., 2001, 49(5):444-445

    77. [77]

      [77] Křepelová A, Reich T, Sachs S, et al. J. Colloid Interface Sci., 2008, 319(1):40-47

    78. [78]

      [78] Křepelová A, Sachs S, Bernhard G. Radiochim. Acta, 2006, 94(12):825-833

    79. [79]

      [79] Sachs S, Brendler V, Geipel G. Radiochim. Acta, 2007, 95 (2):103-110

    80. [80]

      [80] K?epelová A, Brendler V, Sachs S. et al. Environ. Sci. Technol., 2007, 41(17):6142-6147

    81. [81]

      [81] Reich T, Reich T Ye. Amayri S, et al. AIP Conf. Proc., 2007, 882:179-183

    82. [82]

      [82] Thompson H A, Parks G A. Brown G E, Adsorption of Metals by Geomedia, Jenne Jr. E. A. Ed., San Diego: Academic Press, 1998:349

    83. [83]

      [83] Reich T, Moll H, Arnold T, et al. J. Electron Spectrosc. Relat. Phenom., 1998, 96:237-243

    84. [84]

      [84] Sylwester E R, Hudson E A, Allen P G. Geochim. Cosmochim. Acta, 2000, 64:2431-2438

    85. [85]

      [85] Hennig C, Reich T, Dáhn R, et al. Radiochim. Acta, 2000, 90(9-11):653-657

    86. [86]

      [86] Arnold T, Scheinost A C, Baumann N, Annual report 2006, Report FZD-459, Forschungszentrum Dresden-Rossendorf, 2007:53

    87. [87]

      [87] Sherman D M, Peacock C L, Hubbard C G. Geochim. Cosmochim. Acta, 2008, 72(2):298-310

    88. [88]

      [88] Schmeide K, Sachs S, Bubner M, et al. Inorg. Chim. Acta, 2003, 351:133-140

    89. [89]

      [89] Denecke M A, Pompe S, Reich T, et al. Radiochim. Acta, 1997, 79:151-157

  • 加载中
    1. [1]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    2. [2]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    13. [13]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    16. [16]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(492)
  • Abstract views(721)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return