Citation: QIU Lin, JI Yi-Fan, ZHU Cheng-Cheng, CHEN Yun-Cong, HE Wei-Jiang*, GUO Zi-Jian*. A BODIPY-Derived Zn2+ Fluorescent Sensor:the Enhanced ICT Effect[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 169-178. doi: 10.11862/CJIC.2014.077 shu

A BODIPY-Derived Zn2+ Fluorescent Sensor:the Enhanced ICT Effect

  • Received Date: 27 October 2013
    Available Online: 1 December 2013

    Fund Project:

  • Modifying BODIPYwith a(4-hydroxyl)styryl group and a Zn2+ chelator respectively at α-and meso-positions resulted in a Zn2+ fluorescent sensor of yellow emission(580 nm) and large Stokes shift (~50 nm). The α-(4-hydroxyl)styryl-enhanced ICTeffect is responsible for the enlarged Stokes shift and bathochromic shifted excitation/emission of BODIPY, which favor to reduce the imaging interference of autofluorescence, phototoxicity and excitation. Photospectroscopic study disclosed the specific Zn2+-amplified fluorescence of this sensor, and the normal metal cations and near neutral pHshow very little interference to its Zn2+ sensing behavior. Its linear response range to Zn2+ is 0.12~1.2 μmol·L-1, and the LOD is 0.18 μmol·L-1. Confocal fluorescence imaging of intracellular Zn2+ in HeLa cells demonstrated the sensor's cell membrane permeability and its reversible cytosolic Zn2+ imaging ability.
  • 加载中
    1. [1]

      [1] Que E L, Domaille D W, Chang C J. Chem. Rev., 2008, 108: 1517-1549

    2. [2]

      [2] Vallee B L, Falchuk K H. Physiol. Rev., 1993, 73:79-118

    3. [3]

      [3] Watt N T, Whitehouse I J, Hooper N M. J. Alzheimers Dis., 2010, 2011:971021-971031

    4. [4]

      [4] Jayawardena R, Ranasinghe P, Galappatthy P, et al. Diabetol. Metab. Syndr., 2012, 4:13-24

    5. [5]

      [5] Ho E, Song Y. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12: 640-645

    6. [6]

      [6] Jiang P, Guo Z. Coordin. Chem. Rev., 2004, 248:205-229

    7. [7]

      [7] (a)Frederickson C J, Kasarskis E J, Ringo D, et al. J. Neurosci. Methods, 1987, 20:91-103

    8. [8]

      (b)Nasir M S, Fahrni C J, Suhy D A, et al. J. Biol. Inorg. Chem., 1999, 4:775-783

    9. [9]

      (c)Hendrickson K M, Geue J P, Wyness O, et al. J. Am. Chem. Soc., 2003, 125:3889-3895

    10. [10]

      [8] (a)Walkup G K, Burdette S C, Lippard S J, et al. J. Am. Chem. Soc., 2000, 122:5644-5645

    11. [11]

      (b)Burdette S C, Walkup G K, Spingler B, et al. J. Am. Chem. Soc., 2001, 123:7831-7841

    12. [12]

      (c)Chang C J, Nolan E M, Jaworski J, et al. J. Chem. Biol., 2004, 11:203-210

    13. [13]

      (d)Burdette S C, Frederickson C J, Bu W, et al. J. Am. Chem. Soc., 2003, 125:1778-1787

    14. [14]

      (e)Frederickson C J, Burdette S C, Frederickson C J, et al. J. Neurosci. Methods, 2004, 139:79-89

    15. [15]

      (f)Nolan E M, Burdette S C, Harvey J H, et al. Inorg. Chem., 2004, 43:2624-2635

    16. [16]

      (g)Chang C J, Nolan E M, Jaworski J, et al. Inorg. Chem., 2004, 43:6774-6779

    17. [17]

      (h)Woodroofe C C, Masalha R, Barnes K R, et al. Chem. Biol., 2004, 11:1659-1666

    18. [18]

      (i)Nolan E M, Jaworski J, Racine M E, et al. Inorg. Chem., 2006, 45:9748-9757

    19. [19]

      [9] (a)Hirano, T, Kikuchi K, Nagano T. J. Am. Chem. Soc., 2000, 122:12399-12400

    20. [20]

      (b)Hirano T, Kikuchi K, Nagano T. J. Am. Chem. Soc., 2002, 124:6555-6562

    21. [21]

      (c)Komatsu K, Kikuchi K, Kojima H, et al. J. Am. Chem. Soc., 2005, 127:10197-10204

    22. [22]

      [10] Hirano T, Kikuchi K, Urano Y, et al. J. Am. Chem. Soc., 2000, 122:12399-12400

    23. [23]

      [11] Hirano T, Kikuchi K, Urano Y, et al. Angew. Chem. Int. Ed., 2000, 39:1052-1054

    24. [24]

      [12] Parkesh R, Clive Lee T, Gunnlaugsson T. Org Biomol. Chem., 2007, 5:310-317

    25. [25]

      [13] Kim S Y, Hong J I. Tetrahedron Lett., 2009, 50:2822-2824

    26. [26]

      [14] Zhao L Y, Mi Q L, Wang G K, et al. Tetrahedron Lett., 2013, 54:3353-3358

    27. [27]

      [15] Mizukami S, Okada S, Kimura S, et al. Inorg. Chem., 2009, 48:7630-7638

    28. [28]

      [16] Li J, Zhang C F, Ming Z Z, et al. Tetrahedron, 2013, 69:4743-4748

    29. [29]

      [17] Guo Z, Kim G H, Shin I, et al. Biomaterials, 2012, 33:7818-7827

    30. [30]

      [18] Tang B, Huang H, Xu K, et al. Chem. Commun., 2006:3609-3611

    31. [31]

      [19] Sasaki H, Hanaoka K, Urano Y, et al. Bioorg. Med. Chem., 2011, 19:1072-1078

    32. [32]

      [20] Du P, Lippard S J. Inorg. Chem., 2010, 49:10753-10755

    33. [33]

      [21] Sivaraman G, Anand T, Chellappa D. Analyst, 2012, 137: 5881-5884

    34. [34]

      [22] Cao J, Zhao C, Wang X, et al. Chem. Commun., 2012, 48: 9897-9899

    35. [35]

      [23] Zhu S, Zhang J, Janjanam J, et al. J. Mater. Chem. B, 2013, 1:1722

    36. [36]

      [24] Zhang S, Wu T, Fan J, et al. Org. Biomol. Chem., 2013, 11: 555-558

    37. [37]

      [25] TIAN Mao-Zhong(田茂忠), PENG Xiao-Jun(彭孝军), FAN Jiang-Li(樊江莉). Chin. J. Anal. Chem.(分析化学), 2006, 34:S283-S288

    38. [38]

      [26] Rurack K, Kollmannsberger M, Daub J. Angew. Chem. Int. Ed., 2001, 40:385-387

    39. [39]

      [27] Qian F, Zhang C L, Zhang Y M, et al. J. Am. Chem. Soc., 2009, 131:1460-1468

    40. [40]

      [28] Ashokkumar P, Ramakrishnan V T, Ramamurthy P. J. Phys. Chem. A, 2011, 115:14292-14299

    41. [41]

      [29] Peng X J, Du J J, Fan J L, et al. J. Am. Chem. Soc., 2007, 129:1500-1501

    42. [42]

      [30] Bozdemir O A, Guliyev R, Buyukcakir O, et al. J. Am. Chem. Soc., 2010, 132:8029-8036

    43. [43]

      [31] Dalpozzo R, De Nino A, Maiuolo L, et al. Aust. J. Chem., 2007, 60:75-79

    44. [44]

      [32] Dutta B, Bag P, Florke U, et al. Inorg. Chem., 2005, 44:147-157

    45. [45]

      [33] Chou C Y, Liu S R, Wu S P. Analyst, 2013, 138:3264-3270

    46. [46]

      [34] Gibbs J H, Robins L T, Zhou Z, et al. Bioorgan. Med. Chem., 2013, 21:5770-5781

    47. [47]

      [35] Loudet A, Burgess K. Chem. Rev., 2007, 107:4891-4932

    48. [48]

      [36] Gee K R, Zhou Z L, Ton-That D, et al. Cell Calcium., 2002, 31:245-251

    49. [49]

      [37] Wu Y K, Peng X J, Guo B C, et al. Org. Biomol. Chem., 2005, 3:1387-1392

    50. [50]

      [38] Liu Z, Zhang C, Chen Y, et al. Chem. Commun., 2012, 48: 8365-8367

    51. [51]

      [39] Zhang C, Liu Z, Li Y, et al. Chem. Commun., 2013, 49:11430-11432

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    6. [6]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    9. [9]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    10. [10]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    11. [11]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    12. [12]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    16. [16]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    17. [17]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

Metrics
  • PDF Downloads(0)
  • Abstract views(604)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return