Citation: YIN Ping, JIANG Xiao-Hong*, ZOU Min, LU Lu-De, WANG Xin. Catalytic Effect of SiO2/Co3O4 Core-Shell Catalyst on Thermal Decomposition of AP[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 185-191. doi: 10.11862/CJIC.2014.076 shu

Catalytic Effect of SiO2/Co3O4 Core-Shell Catalyst on Thermal Decomposition of AP

  • Received Date: 11 November 2013
    Available Online: 9 December 2013

    Fund Project:

  • Highly dispersed SiO2 microspheres with mean diameter of 200 nm were prepared by modified Stöber method. Then the prepared SiO2 nanoparticles were coated with Co3O4 via liquid precipitation method and urea homogeneous precipitation method respectively, thus a new type SiO2/Co3O4 core-shell catalysts with different coating forms were obtained. X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared (IR) spectra, Raman Microscopy and BET specific surface area measurement were used to characterize the SiO2/Co3O4 composite nanoparticles. The catalytic activities of SiO2/Co3O4 composites for thermal decomposition of ammonium perchlorate (AP) were studied by differential scanning calorimetry (DSC). Furthermore, we espescially investigated the influence of different coating forms on its catalytic effect. The results indicate that SiO2/Co3O4 nanocomposites synthesised by different methods possess obvious core-shell structure are with high specific surface area,which are layer-coated and particle-coated respectively. And the catalytic activity of particle-coated SiO2/Co3O4 nanocomposites is best, which reduce the high decomposition temperature of AP by 110 ℃, and increase heat quantity by 662 J·g-1.
  • 加载中
    1. [1]

      [1] CHEN Qing-Ling(陈庆龄). Modern Chem. Ind.(现代化学), 2004, 24(7):20-25

    2. [2]

      [2] FANG Li(范立), DUAN Tao(段涛). Guangzhou Chem. Ind. (广州化工), 2010, 38(12):25-26

    3. [3]

      [3] YAN Zi-Feng(阎子峰). Nanomet. Catal. Technol.(纳米催化 技术). Beijing:Chemical Industry Process, 2003.

    4. [4]

      [4] Aleksandr V D. Propellants, Explos., Pyrotech., 2005, 30:244-249

    5. [5]

      [5] LI Feng-Sheng(李凤生), YANG Yi(杨毅), MA Zhen-Ye (马振叶), et al. Nanomet. Funct. Composit. Mater. Appl. (纳米功能复合材料), Beijing:National Defence Industry Press, 2003.

    6. [6]

      [6] LIU Jian-Xun(刘建勋), LI Feng-Sheng(李凤生), JIANG Wei (姜炜), et al. J. Solid Roket Technol.(固体火箭技术), 2007, 30(3):243-247

    7. [7]

      [7] SHI Li-Hong(石利红), LI Xiao-Feng(李晓峰), LI De-Bao (李德宝), et al. Chin. J. Catal. (催化学报), 2010, 31(12): 1483-1488

    8. [8]

      [8] Stöber W, Fink A. J. Colloid Interf. Sci., 1968, 26:62-69

    9. [9]

      [9] Yang J H, Sasaki T. Cryst. Growth Des., 2010, 10(3):1233-1236

    10. [10]

      [10] Farhadi S, Safabakhsh J, Zaringhadam P. J. Nanostruct. Chem., 2013, 3:69-77

    11. [11]

      [11] Meng Y D, Chen D, Jiao X L. J. Phys. Chem. B, 2006, 110: 15212-15217

    12. [12]

      [12] Chakkalakal G L, Alexandre M, Abetz C, et al. Macromol. Chem. Phys., 2012, 213:513528.

    13. [13]

      [13] MENG Yong-De(孟永德). Thesis for the Doctorate of Shandong University(山东大学博士论文). 2007

    14. [14]

      [14] Farhadi S, Pourzare K, Sadeghinejad S. J. Nanostruct. Chem., 2013, 3:16-22

    15. [15]

      [15] Tripathy S K, Christy M. Mater. Lett., 2008, 62:1006-1009

    16. [16]

      [16] LU Lu-De(陆路德). Quantum Chemistry (量子化学). Beijing: Science Press, 1980

    17. [17]

      [17] Boldyrev V V. Thermochim. Acta, 2006, 443:1-36

    18. [18]

      [18] YE Jian(叶剑), ZHANG Rui-Feng(张瑞丰), HOU Lin-Xi (侯琳熙). Chin. J. Environ.Eng.(环境工程学报), 2011, 5(7): 1598-1600

    19. [19]

      [19] Keenan A G, Siegmund R F. Quart. Rev. Chem. Soc., 1969, 23(3):435-452

    20. [20]

      [20] Rosso L, Tuckerman M E. Solid State Ion, 2003, 161:219-229

    21. [21]

      [21] Chaturvedi S, Pragnesh N D. J. Saudi Chem. Soc., 2013, 17 (2):135-149

    22. [22]

      [22] ZHANG Bo-Sheng(张柏生). Introd. Powder Burning(火药燃 料导论). Nanjing:East China Insttute of Technology, 1988.

    23. [23]

      [23] LIU Jian-Xun(刘建勋), WANG Zuo-Shan(王作山), JIANG Wei(姜炜), et al. Rare Metal Mater. Eng.(稀有金属材料与 工程), 2007, 36(Z3):649-653

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(0)
  • Abstract views(545)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return