Citation: WANG Li, ZHAO Yong*, JIANG Lei*. Directional Motion and Adhesion of Tiny Droplets on Bioinspired Spindle-Knotted TiO2 Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 155-162. doi: 10.11862/CJIC.2014.075 shu

Directional Motion and Adhesion of Tiny Droplets on Bioinspired Spindle-Knotted TiO2 Fibers

  • Received Date: 30 September 2013
    Available Online: 29 November 2013

    Fund Project:

  • Bioinspired TiO2 fibers with periodic spindle knots were prepared, whose surface showed responsive wettability and adhesion. The responsive wettability of these fibers was intellectually controlled by micro/nano structures of fibers and environmental stimulation such as ultraviolet and ultrasonic. Based on controlled wettability of bioinspired TiO2 fibers, tiny water droplets could not only move directionally from joint to spindle knot but also be captured by fiber spindle knots. When the fibers are hydrophilic, tiny water droplets always move directionally whatever the surface of fibers is smooth or rough. When the fibers become hydrophobic, tiny water droplets on the fibers firstly move from both ends to center of spindle knots, and then are adhered by spindle knots with rough surface.
  • 加载中
    1. [1]

      [1] Chaudhury M K, Whitesides G M. Science, 1992, 256:1539-1541

    2. [2]

      [2] Bain C D, Burnett-Hall G D, Montgomerie R R. Nature, 1994, 372:414-415

    3. [3]

      [3] Domingues dos Santos F, Ondaruhu T. Phys. Rev. Lett., 1995, 75:2972-2973

    4. [4]

      [4] Sumino Y, Magome N, Hamada T, et al. Phys. Rev. Lett., 2005, 94:068301

    5. [5]

      [5] Ichimura K, Oh S K, Nakagawa M. Science, 2000, 288:1624-1626

    6. [6]

      [6] Moumen N, Subramanian R S, McLaughlin J B. Langmuir, 2006, 22:2682-2690

    7. [7]

      [7] Grunze M. Science, 1999, 283:41-42

    8. [8]

      [8] Burns M A, Mastrangelo C H, Sammarco T S, et al. Proc. Natl. Acad. Sci. U.S.A., 1996, 93:5556-5561

    9. [9]

      [9] Gau H, Herminghaus S, Lenz P, et al. Science, 1999, 283:46-49

    10. [10]

      [10] Lai Y H, Yang J T, Shieh D B. Lab Chip, 2010, 10:499-504

    11. [11]

      [11] Shastry A, Case M J, Bohringer K F. Langmuir, 2006, 22: 6161-6167

    12. [12]

      [12] Sessoms D, Belloul M, Engl W, et al. Phys. Rev. E, 2009, 80:016317

    13. [13]

      [13] Zheng Y M, Bai H, Huang Z B, et al. Nature, 2010, 463:640-643

    14. [14]

      [14] Agranovski I E, Braddock R D. AIChE J., 1998, 44:2775-2783

    15. [15]

      [15] Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291: 633-636

    16. [16]

      [16] Bai H, Tian X L, Ju J, et al. Adv. Mater., 2010, 22:5521-5525

    17. [17]

      [17] Bai H, Ju J, Sun R Z, et al. Adv. Mater., 2011, 23:3708-3711

    18. [18]

      [18] Tian X L, Bai H, Zheng Y M, et al. Adv. Funct. Mater., 2011, 21:1398-1402

    19. [19]

      [19] Dong H, Wang N, Wang L, et al. ChemPhysChem, 2012, 13: 1153-1156

    20. [20]

      [20] Li C, Guo R W, Jiang X, et al. Adv. Mater., 2009, 21:4254-1258

    21. [21]

      [21] Hou Y P, Gao L C, Feng S L, et al. Chem. Commun., 2013, 49:5253-5255

    22. [22]

      [22] Tasbihi M, Štangar U L, Černigoj U, et al. Photochem. Photobiol. Sci., 2009, 8:719-725

    23. [23]

      [23] Sánchez B, Coronado J M, Candal R, et al. Appl. Catal. B: Environmental, 2006, 66:295-301

    24. [24]

      [24] Wang L, Ji X Y, Wang N, et al. NPG Asia Mater., 2012, 4: e14

    25. [25]

      [25] Sakai N, Wang R, Fujishima A, et al. Langmuir, 1998, 14: 5918-5920

    26. [26]

      [26] Sakai N, Fujishima A, Watanabe T, et al. J. Phys. Chem. B, 2003, 107:1028-1035

    27. [27]

      [27] Kamei M, Mitsuhashi T. Surf. Sci., 2000, 463:L609-L612

  • 加载中
    1. [1]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    2. [2]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    3. [3]

      Ying Zhu Xiaobo Sun Cunming Yu Guangsheng Wang . Role of Virtual Experiments in Cultivating Top Innovative Talents at Beihang University: a Case of the Exploration and Design of Bioinspired Superhydrophobic Interfaces. University Chemistry, 2026, 41(2): 54-58. doi: 10.12461/PKU.DXHX202502037

    4. [4]

      Shengyan Yang Xiangzhen Meng Xin Wang Yang Zhang . Construction and Exploration of an Online-Offline Blended “Eight-Link” Teaching Method for Physical Chemistry Experiments Based on OBE Concept. University Chemistry, 2024, 39(11): 28-37. doi: 10.3866/PKU.DXHX202402019

    5. [5]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    6. [6]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    9. [9]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    10. [10]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    13. [13]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    14. [14]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    15. [15]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    16. [16]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    17. [17]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-0. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(523)
  • Abstract views(1049)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return