Citation: LIU Cui-Lian, TANG Rui-Kang*. Calcium Phosphate Nanoparticles in Bone and Biomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 1-9. doi: 10.11862/CJIC.2014.072 shu

Calcium Phosphate Nanoparticles in Bone and Biomaterials

  • Received Date: 24 September 2013
    Available Online: 28 October 2013

    Fund Project:

  • Calcium phosphate nanoparticles play a key role in the formation of bone in nature. Although there is significant variation between different types of bone, inorganic components in the primary structure of bone are nano calcium phosphates. Nano-calcium phosphates can confer on bone remarkable mechanical property and bioactivity. In living organisms, inorganic nano calcium phosphate particles, under the control of an organic matrix, can combine into self-assembled biominerals. The in vitro experiments have demonstrated the improved biocompatibility of calcium phosphates in their nano forms. Greater cell proliferation of bone marrow mesenchymal stem cells (MSCs) is frequently induced by smaller hydroxyapatite (HAP) nanoparticles. HAP improved a better differentiation for MSCs than the amorphous one, ACP, when they are in the same size distribution. Due to its excellent biocompatibility, it is suggest that nano-HAP may be developed as an ideal biomaterial in bone tissue engineering and biomedicine.
  • 加载中
    1. [1]

      [1] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001:6

    2. [2]

      [2] Olszta M J, Cheng X, Jee S S, et al. Mater. Sci. Eng., 2007, 58(3):77-116

    3. [3]

      [3] CUI Fu-Zhai(崔福斋). Biomineralization(生物矿化). Beijing: Tsinghua University Press, 2007:17

    4. [4]

      [4] Cai Y, Tang R. J. Mater. Chem., 2008, 18(32):3775-3787

    5. [5]

      [5] Currey J D. Science, 2005, 309(5732):253-254

    6. [6]

      [6] Fincham A, Moradian-Oldak J, Simmer J. J. Struct. Boil., 1999, 126(3):270-299

    7. [7]

      [7] Zhou H, Lee J. Acta Biomater., 2011, 7(7):2769-2781

    8. [8]

      [8] Wei G, Ma P X. Biomaterials, 2004, 25(19):4749-4757

    9. [9]

      [9] Malmberg P, Nygren H. Proteomics, 2008, 8(18):3755-3762

    10. [10]

      [10] Mrten A, Fratzl P, Paris O, et al. Biomaterials, 2010, 31(20): 5479-5490

    11. [11]

      [11] Batchelar D L, Davidson M T, Dabrowski W, et al. Med. Phys., 2006, 33(4):904-916

    12. [12]

      [12] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomater., 2013, 9(8):7591-7621

    13. [13]

      [13] Kalita S J, Bhardwaj A, Bhatt H A. Mater. Sci. Eng. C, 2007, 27(3):441-449

    14. [14]

      [14] Traub W, Arad T, Weiner S. Proc. Natl. Acad. Sci. U S A, 1989, 86(24):9822-9826

    15. [15]

      [15] Ji B, Gao H. Annu. Rev. Mater. Res., 2010, 40:77-100

    16. [16]

      [16] Lowenstam H A, Weiner S. On biomineralization, Oxford University Press, 1989.

    17. [17]

      [17] Wang L, Nancollas G H, Henneman Z J, et al. Biointerphases, 2006, 1(3):106-111

    18. [18]

      [18] Fratzl P, Gupta H, Paschalis E, et al. J. Mater. Chem., 2004, 14(14):2115-2123

    19. [19]

      [19] Ji B, Gao H. J. Mech. Phys. Solids, 2004, 52(9):1963-1990

    20. [20]

      [20] Gao H, Ji B, Jger I L, et al. Proc. Natl. Acad. Sci. U S A, 2003, 100(10):5597-5600

    21. [21]

      [21] Landis W J, Paine M C, Glimcher M J. J. Ultrastruc. Res., 1977, 59(1):1-30

    22. [22]

      [22] Gupta H S, Seto J, Wagermaier W, et al. Proc. Natl. Acad. Sci. U S A, 2006, 103(47):17741-17746

    23. [23]

      [23] Raisz L G, Kream B E. Annu. Rev. Physiol., 1981, 43(1): 225-238

    24. [24]

      [24] Raisz L G. Clin. Chem., 1999, 45(8):1353-1358

    25. [25]

      [25] Váábánen K. Adv. Drug Delivery Rev., 2005, 57(7):959-971

    26. [26]

      [26] Vallet-Regí M, González-Calbet J M. Prog. Solid State Chem., 2004, 32(1):1-31

    27. [27]

      [27] Okada M, Furuzono T. Sci. Technol. Adv. Mater., 2012, 13 (6):064103

    28. [28]

      [28] Yeong K, Wang J, Ng S. Biomaterials, 2001, 22(20):2705-2712

    29. [29]

      [29] Tas A C. J. Eur. Ceram. Soc., 2000, 20(14):2389-2394

    30. [30]

      [30] Suchanek W L, Shuk P, Byrappa K, et al. Biomaterials, 2002, 23(3):699-710

    31. [31]

      [31] Bezzi G, Celotti G, Landi E, et al. Mater. Chem. Phys., 2003, 78(3):816-824

    32. [32]

      [32] Sadat-Shojai M, Atai M, Nodehi A. J. Brazilian Chem. Soc., 2011, 22(3):571-582

    33. [33]

      [33] Ito H, Oaki Y, Imai H. Cryst. Growth Des., 2008, 8(3):1055-1059

    34. [34]

      [34] Hassenkam T, Fantner G E, Cutroni J A, et al. Bone, 2004, 35(1):4-10

    35. [35]

      [35] Wang X, Zhuang J, Peng Q, et al. Nature, 2005, 437(7055): 121-124

    36. [36]

      [36] Ingert D, Pileni M P. Adv. Funct. Mater., 2001, 11(2):136-139

    37. [37]

      [37] Zhang B, Li G, Zhang J, et al. Nanotechnology, 2003, 14(4): 443

    38. [38]

      [38] Zhang B, Davis S A, Mann S. Chem. Mater., 2002, 14(3): 1369-1375

    39. [39]

      [39] Douglas T, Young M. Nature, 1998, 393(6681):152-155

    40. [40]

      [40] Shenton W, Douglas T, Young M, et al. Adv. Mater., 1999, 11(3):253-256

    41. [41]

      [41] Bose S, Saha S K. Chem. Mater., 2003, 15(23):4464-4469

    42. [42]

      [42] Sun Y, Guo G, Tao D, et al. J. Phys. Chem. Solids, 2007, 68(3):373-377

    43. [43]

      [43] Shenton W, Pum D, Sleytr U B, et al. Nature, 1997, 389 (6651):585-587

    44. [44]

      [44] Carpick R W, Salmeron M. Chem. Rev., 1997, 97(4):1163-1194

    45. [45]

      [45] Cai Y, Liu Y, Yan W, et al. J. Mater. Chem., 2007, 17(36): 3780-3787

    46. [46]

      [46] Fowler C E, Li M, Mann S, et al. J. Mater. Chem., 2005, 15 (32):3317-3325

    47. [47]

      [47] Penn R L, Banfield J F. Am. Mineral, 1998, 83(9/10):1077-1082

    48. [48]

      [48] Niederberger M, Clfen H. Phys. Chem. Chem. Phys., 2006, 8(28):3271-3287

    49. [49]

      [49] Tao J, Zhou D, Zhang Z, et al. Proc. Natl. Acad. Sci. U S A, 2009, 106(52):22096-22101

    50. [50]

      [50] Tao J, Pan H, Zeng Y, et al. J. Phys. Chem. B, 2007, 111 (47):13410-13418

    51. [51]

      [51] Weiner S, Traub W, Wagner H D. J. Struct. Biol., 1999, 126(3):241-255

    52. [52]

      [52] Yuasa T, Miyamoto Y, Ishikawa K, et al. Biomaterials, 2004, 25(7):1159-1166

    53. [53]

      [53] Shu R, McMullen R, Baumann M, et al. J. Biomed. Mater. Res. A, 2003, 67(4):1196-1204

    54. [54]

      [54] Balasundaram G, Sato M, Webster T J. Biomaterials, 2006, 27(14):2798-2805

    55. [55]

      [55] Hu Q, Tan Z, Liu Y, et al. J. Mater. Chem., 2007, 17(44): 4690-4698

    56. [56]

      [56] Webster T J, Ergun C, Doremus R H, et al. Biomaterials, 2000, 21(17):1803-1810

    57. [57]

      [57] Liu X, Smith L A, Hu J, et al. Biomaterials, 2009, 30(12): 2252-2258

    58. [58]

      [58] Rezwan K, Chen Q, Blaker J, et al. Biomaterials, 2006, 27 (18):3413-3431

    59. [59]

      [59] Robinson C, Connell S, Kirkham J, et al. J. Mater. Chem., 2004, 14(14):2242-2248

    60. [60]

      [60] Li L, Pan H, Tao J, et al. J. Mater. Chem., 2008, 18(34): 4079-4084

    61. [61]

      [61] Bernardi G. Coll. Intern. CNRS, 1975, 230:463-465

    62. [62]

      [62] Luo Y, Ling Y, Guo W, et al. J. Controlled Release, 2010, 147(2):278-288

    63. [63]

      [63] Uskokovi V, Uskokovi D P. J Biomed. Mater. Res. B: Appl. Biomater., 2011, 96(1):152-191

    64. [64]

      [64] Cai Y, Pan H, Xu X, et al. Chem. Mater., 2007, 19(13): 3081-3083

    65. [65]

      [65] Yang P, Quan Z, Li C, et al. Biomaterials, 2008, 29(32): 4341-4347

    66. [66]

      [66] Chen W, Xiao Y, Liu X, et al. Chem. Commun., 2013, 49: 4932-4934

    67. [67]

      [67] Chen C, Okayama H. Biotechnique, 1987, 6(7):632-638

    68. [68]

      [68] Dorozhkin S V. Biomaterials, 2010, 31(7):1465-1485

    69. [69]

      [69] Zhu S, Huang B, Zhou K, et al. J. Nanopart. Res., 2004, 6 (2):307-311

    70. [70]

      [70] Hossain S, Stanislaus A, Chua M J, et al. J. Controlled Release, 2010, 147(1):101-108

    71. [71]

      [71] Wang B, Liu P, Jiang W, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564

    72. [72]

      [72] Wang G, Li X, Mo L, et al. Angew. Chem. Int. Ed., 2012, 124(42), 10728-10731

    73. [73]

      [73] Wang W, Itoh S, Tanaka Y, et al. Acta Biomater., 2009, 5 (8):3132-3140

    74. [74]

      [74] Itoh S, Nakamura S, Nakamura M, et al. Biomaterials, 2006, 27(32):5572-5579

    75. [75]

      [75] Kumar D, Gittings J, Turner I, et al. Acta Biomater., 2010, 6(4):1549-1554

    76. [76]

      [76] Tran N, Webster T J. J. Mater. Chem., 2010, 20(40):8760-8767

    77. [77]

      [77] Tran N, Webster T J. Acta Biomater., 2011, 7(3):1298-1306

    78. [78]

      [78] Hou C H, Hou S M, Hsueh Y S, et al. Biomaterials, 2009, 30(23):3956-3960

    79. [79]

      [79] Wu H C, Wang T W, Bohn M C, et al. Adv. Funct. Mater., 2010, 20(1):67-77

    80. [80]

      [80] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Biomaterials, 2005, 26(15):2677-2684

    81. [81]

      [81] Chen W, Liu Y, Courtney H, et al. Biomaterials, 2006, 27 (32):5512-5517

    82. [82]

      [82] Rameshbabu N, Kumar N S, Prabhakar T, et al. J. Biomed. Mater. Res. A, 2007, 80(3):581-591

    83. [83]

      [83] Zhang M, Liu J K, Miao R, et al. Nanoscale Res. Lett., 2010, 5(4):675-679

    84. [84]

      [84] Li L, Liu Y, Tao J, et al. J. Phys. Chem. C, 2008, 112(32): 12219-12224

  • 加载中
    1. [1]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    2. [2]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    5. [5]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    6. [6]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    7. [7]

      Mochou GAOShan MENGJinzhong ZHANGWenhua FENGShuo DONGJianping CHENYanbao ZHAOLaigui YURongrong YINGXueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431

    8. [8]

      Lixing ZHANGYaowen WANGXu HANJunhong ZHOUJinghui WANGLiping LIGuangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007

    9. [9]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    10. [10]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    12. [12]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    15. [15]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    16. [16]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    17. [17]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    18. [18]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    19. [19]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    20. [20]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

Metrics
  • PDF Downloads(517)
  • Abstract views(1108)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return