Citation: LIU Cui-Lian, TANG Rui-Kang*. Calcium Phosphate Nanoparticles in Bone and Biomaterials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 1-9. doi: 10.11862/CJIC.2014.072 shu

Calcium Phosphate Nanoparticles in Bone and Biomaterials

  • Received Date: 24 September 2013
    Available Online: 28 October 2013

    Fund Project:

  • Calcium phosphate nanoparticles play a key role in the formation of bone in nature. Although there is significant variation between different types of bone, inorganic components in the primary structure of bone are nano calcium phosphates. Nano-calcium phosphates can confer on bone remarkable mechanical property and bioactivity. In living organisms, inorganic nano calcium phosphate particles, under the control of an organic matrix, can combine into self-assembled biominerals. The in vitro experiments have demonstrated the improved biocompatibility of calcium phosphates in their nano forms. Greater cell proliferation of bone marrow mesenchymal stem cells (MSCs) is frequently induced by smaller hydroxyapatite (HAP) nanoparticles. HAP improved a better differentiation for MSCs than the amorphous one, ACP, when they are in the same size distribution. Due to its excellent biocompatibility, it is suggest that nano-HAP may be developed as an ideal biomaterial in bone tissue engineering and biomedicine.
  • 加载中
    1. [1]

      [1] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001:6

    2. [2]

      [2] Olszta M J, Cheng X, Jee S S, et al. Mater. Sci. Eng., 2007, 58(3):77-116

    3. [3]

      [3] CUI Fu-Zhai(崔福斋). Biomineralization(生物矿化). Beijing: Tsinghua University Press, 2007:17

    4. [4]

      [4] Cai Y, Tang R. J. Mater. Chem., 2008, 18(32):3775-3787

    5. [5]

      [5] Currey J D. Science, 2005, 309(5732):253-254

    6. [6]

      [6] Fincham A, Moradian-Oldak J, Simmer J. J. Struct. Boil., 1999, 126(3):270-299

    7. [7]

      [7] Zhou H, Lee J. Acta Biomater., 2011, 7(7):2769-2781

    8. [8]

      [8] Wei G, Ma P X. Biomaterials, 2004, 25(19):4749-4757

    9. [9]

      [9] Malmberg P, Nygren H. Proteomics, 2008, 8(18):3755-3762

    10. [10]

      [10] Mrten A, Fratzl P, Paris O, et al. Biomaterials, 2010, 31(20): 5479-5490

    11. [11]

      [11] Batchelar D L, Davidson M T, Dabrowski W, et al. Med. Phys., 2006, 33(4):904-916

    12. [12]

      [12] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomater., 2013, 9(8):7591-7621

    13. [13]

      [13] Kalita S J, Bhardwaj A, Bhatt H A. Mater. Sci. Eng. C, 2007, 27(3):441-449

    14. [14]

      [14] Traub W, Arad T, Weiner S. Proc. Natl. Acad. Sci. U S A, 1989, 86(24):9822-9826

    15. [15]

      [15] Ji B, Gao H. Annu. Rev. Mater. Res., 2010, 40:77-100

    16. [16]

      [16] Lowenstam H A, Weiner S. On biomineralization, Oxford University Press, 1989.

    17. [17]

      [17] Wang L, Nancollas G H, Henneman Z J, et al. Biointerphases, 2006, 1(3):106-111

    18. [18]

      [18] Fratzl P, Gupta H, Paschalis E, et al. J. Mater. Chem., 2004, 14(14):2115-2123

    19. [19]

      [19] Ji B, Gao H. J. Mech. Phys. Solids, 2004, 52(9):1963-1990

    20. [20]

      [20] Gao H, Ji B, Jger I L, et al. Proc. Natl. Acad. Sci. U S A, 2003, 100(10):5597-5600

    21. [21]

      [21] Landis W J, Paine M C, Glimcher M J. J. Ultrastruc. Res., 1977, 59(1):1-30

    22. [22]

      [22] Gupta H S, Seto J, Wagermaier W, et al. Proc. Natl. Acad. Sci. U S A, 2006, 103(47):17741-17746

    23. [23]

      [23] Raisz L G, Kream B E. Annu. Rev. Physiol., 1981, 43(1): 225-238

    24. [24]

      [24] Raisz L G. Clin. Chem., 1999, 45(8):1353-1358

    25. [25]

      [25] Váábánen K. Adv. Drug Delivery Rev., 2005, 57(7):959-971

    26. [26]

      [26] Vallet-Regí M, González-Calbet J M. Prog. Solid State Chem., 2004, 32(1):1-31

    27. [27]

      [27] Okada M, Furuzono T. Sci. Technol. Adv. Mater., 2012, 13 (6):064103

    28. [28]

      [28] Yeong K, Wang J, Ng S. Biomaterials, 2001, 22(20):2705-2712

    29. [29]

      [29] Tas A C. J. Eur. Ceram. Soc., 2000, 20(14):2389-2394

    30. [30]

      [30] Suchanek W L, Shuk P, Byrappa K, et al. Biomaterials, 2002, 23(3):699-710

    31. [31]

      [31] Bezzi G, Celotti G, Landi E, et al. Mater. Chem. Phys., 2003, 78(3):816-824

    32. [32]

      [32] Sadat-Shojai M, Atai M, Nodehi A. J. Brazilian Chem. Soc., 2011, 22(3):571-582

    33. [33]

      [33] Ito H, Oaki Y, Imai H. Cryst. Growth Des., 2008, 8(3):1055-1059

    34. [34]

      [34] Hassenkam T, Fantner G E, Cutroni J A, et al. Bone, 2004, 35(1):4-10

    35. [35]

      [35] Wang X, Zhuang J, Peng Q, et al. Nature, 2005, 437(7055): 121-124

    36. [36]

      [36] Ingert D, Pileni M P. Adv. Funct. Mater., 2001, 11(2):136-139

    37. [37]

      [37] Zhang B, Li G, Zhang J, et al. Nanotechnology, 2003, 14(4): 443

    38. [38]

      [38] Zhang B, Davis S A, Mann S. Chem. Mater., 2002, 14(3): 1369-1375

    39. [39]

      [39] Douglas T, Young M. Nature, 1998, 393(6681):152-155

    40. [40]

      [40] Shenton W, Douglas T, Young M, et al. Adv. Mater., 1999, 11(3):253-256

    41. [41]

      [41] Bose S, Saha S K. Chem. Mater., 2003, 15(23):4464-4469

    42. [42]

      [42] Sun Y, Guo G, Tao D, et al. J. Phys. Chem. Solids, 2007, 68(3):373-377

    43. [43]

      [43] Shenton W, Pum D, Sleytr U B, et al. Nature, 1997, 389 (6651):585-587

    44. [44]

      [44] Carpick R W, Salmeron M. Chem. Rev., 1997, 97(4):1163-1194

    45. [45]

      [45] Cai Y, Liu Y, Yan W, et al. J. Mater. Chem., 2007, 17(36): 3780-3787

    46. [46]

      [46] Fowler C E, Li M, Mann S, et al. J. Mater. Chem., 2005, 15 (32):3317-3325

    47. [47]

      [47] Penn R L, Banfield J F. Am. Mineral, 1998, 83(9/10):1077-1082

    48. [48]

      [48] Niederberger M, Clfen H. Phys. Chem. Chem. Phys., 2006, 8(28):3271-3287

    49. [49]

      [49] Tao J, Zhou D, Zhang Z, et al. Proc. Natl. Acad. Sci. U S A, 2009, 106(52):22096-22101

    50. [50]

      [50] Tao J, Pan H, Zeng Y, et al. J. Phys. Chem. B, 2007, 111 (47):13410-13418

    51. [51]

      [51] Weiner S, Traub W, Wagner H D. J. Struct. Biol., 1999, 126(3):241-255

    52. [52]

      [52] Yuasa T, Miyamoto Y, Ishikawa K, et al. Biomaterials, 2004, 25(7):1159-1166

    53. [53]

      [53] Shu R, McMullen R, Baumann M, et al. J. Biomed. Mater. Res. A, 2003, 67(4):1196-1204

    54. [54]

      [54] Balasundaram G, Sato M, Webster T J. Biomaterials, 2006, 27(14):2798-2805

    55. [55]

      [55] Hu Q, Tan Z, Liu Y, et al. J. Mater. Chem., 2007, 17(44): 4690-4698

    56. [56]

      [56] Webster T J, Ergun C, Doremus R H, et al. Biomaterials, 2000, 21(17):1803-1810

    57. [57]

      [57] Liu X, Smith L A, Hu J, et al. Biomaterials, 2009, 30(12): 2252-2258

    58. [58]

      [58] Rezwan K, Chen Q, Blaker J, et al. Biomaterials, 2006, 27 (18):3413-3431

    59. [59]

      [59] Robinson C, Connell S, Kirkham J, et al. J. Mater. Chem., 2004, 14(14):2242-2248

    60. [60]

      [60] Li L, Pan H, Tao J, et al. J. Mater. Chem., 2008, 18(34): 4079-4084

    61. [61]

      [61] Bernardi G. Coll. Intern. CNRS, 1975, 230:463-465

    62. [62]

      [62] Luo Y, Ling Y, Guo W, et al. J. Controlled Release, 2010, 147(2):278-288

    63. [63]

      [63] Uskokovi V, Uskokovi D P. J Biomed. Mater. Res. B: Appl. Biomater., 2011, 96(1):152-191

    64. [64]

      [64] Cai Y, Pan H, Xu X, et al. Chem. Mater., 2007, 19(13): 3081-3083

    65. [65]

      [65] Yang P, Quan Z, Li C, et al. Biomaterials, 2008, 29(32): 4341-4347

    66. [66]

      [66] Chen W, Xiao Y, Liu X, et al. Chem. Commun., 2013, 49: 4932-4934

    67. [67]

      [67] Chen C, Okayama H. Biotechnique, 1987, 6(7):632-638

    68. [68]

      [68] Dorozhkin S V. Biomaterials, 2010, 31(7):1465-1485

    69. [69]

      [69] Zhu S, Huang B, Zhou K, et al. J. Nanopart. Res., 2004, 6 (2):307-311

    70. [70]

      [70] Hossain S, Stanislaus A, Chua M J, et al. J. Controlled Release, 2010, 147(1):101-108

    71. [71]

      [71] Wang B, Liu P, Jiang W, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564

    72. [72]

      [72] Wang G, Li X, Mo L, et al. Angew. Chem. Int. Ed., 2012, 124(42), 10728-10731

    73. [73]

      [73] Wang W, Itoh S, Tanaka Y, et al. Acta Biomater., 2009, 5 (8):3132-3140

    74. [74]

      [74] Itoh S, Nakamura S, Nakamura M, et al. Biomaterials, 2006, 27(32):5572-5579

    75. [75]

      [75] Kumar D, Gittings J, Turner I, et al. Acta Biomater., 2010, 6(4):1549-1554

    76. [76]

      [76] Tran N, Webster T J. J. Mater. Chem., 2010, 20(40):8760-8767

    77. [77]

      [77] Tran N, Webster T J. Acta Biomater., 2011, 7(3):1298-1306

    78. [78]

      [78] Hou C H, Hou S M, Hsueh Y S, et al. Biomaterials, 2009, 30(23):3956-3960

    79. [79]

      [79] Wu H C, Wang T W, Bohn M C, et al. Adv. Funct. Mater., 2010, 20(1):67-77

    80. [80]

      [80] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Biomaterials, 2005, 26(15):2677-2684

    81. [81]

      [81] Chen W, Liu Y, Courtney H, et al. Biomaterials, 2006, 27 (32):5512-5517

    82. [82]

      [82] Rameshbabu N, Kumar N S, Prabhakar T, et al. J. Biomed. Mater. Res. A, 2007, 80(3):581-591

    83. [83]

      [83] Zhang M, Liu J K, Miao R, et al. Nanoscale Res. Lett., 2010, 5(4):675-679

    84. [84]

      [84] Li L, Liu Y, Tao J, et al. J. Phys. Chem. C, 2008, 112(32): 12219-12224

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    3. [3]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

Metrics
  • PDF Downloads(517)
  • Abstract views(806)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return