Citation:
LIU Cui-Lian, TANG Rui-Kang*. Calcium Phosphate Nanoparticles in Bone and Biomaterials[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(1): 1-9.
doi:
10.11862/CJIC.2014.072
-
Calcium phosphate nanoparticles play a key role in the formation of bone in nature. Although there is significant variation between different types of bone, inorganic components in the primary structure of bone are nano calcium phosphates. Nano-calcium phosphates can confer on bone remarkable mechanical property and bioactivity. In living organisms, inorganic nano calcium phosphate particles, under the control of an organic matrix, can combine into self-assembled biominerals. The in vitro experiments have demonstrated the improved biocompatibility of calcium phosphates in their nano forms. Greater cell proliferation of bone marrow mesenchymal stem cells (MSCs) is frequently induced by smaller hydroxyapatite (HAP) nanoparticles. HAP improved a better differentiation for MSCs than the amorphous one, ACP, when they are in the same size distribution. Due to its excellent biocompatibility, it is suggest that nano-HAP may be developed as an ideal biomaterial in bone tissue engineering and biomedicine.
-
-
-
[1]
[1] Mann S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. New York: Oxford University Press, 2001:6
-
[2]
[2] Olszta M J, Cheng X, Jee S S, et al. Mater. Sci. Eng., 2007, 58(3):77-116
-
[3]
[3] CUI Fu-Zhai(崔福斋). Biomineralization(生物矿化). Beijing: Tsinghua University Press, 2007:17
-
[4]
[4] Cai Y, Tang R. J. Mater. Chem., 2008, 18(32):3775-3787
-
[5]
[5] Currey J D. Science, 2005, 309(5732):253-254
-
[6]
[6] Fincham A, Moradian-Oldak J, Simmer J. J. Struct. Boil., 1999, 126(3):270-299
-
[7]
[7] Zhou H, Lee J. Acta Biomater., 2011, 7(7):2769-2781
-
[8]
[8] Wei G, Ma P X. Biomaterials, 2004, 25(19):4749-4757
-
[9]
[9] Malmberg P, Nygren H. Proteomics, 2008, 8(18):3755-3762
-
[10]
[10] Mrten A, Fratzl P, Paris O, et al. Biomaterials, 2010, 31(20): 5479-5490
-
[11]
[11] Batchelar D L, Davidson M T, Dabrowski W, et al. Med. Phys., 2006, 33(4):904-916
-
[12]
[12] Sadat-Shojai M, Khorasani M T, Dinpanah-Khoshdargi E, et al. Acta Biomater., 2013, 9(8):7591-7621
-
[13]
[13] Kalita S J, Bhardwaj A, Bhatt H A. Mater. Sci. Eng. C, 2007, 27(3):441-449
-
[14]
[14] Traub W, Arad T, Weiner S. Proc. Natl. Acad. Sci. U S A, 1989, 86(24):9822-9826
-
[15]
[15] Ji B, Gao H. Annu. Rev. Mater. Res., 2010, 40:77-100
-
[16]
[16] Lowenstam H A, Weiner S. On biomineralization, Oxford University Press, 1989.
-
[17]
[17] Wang L, Nancollas G H, Henneman Z J, et al. Biointerphases, 2006, 1(3):106-111
-
[18]
[18] Fratzl P, Gupta H, Paschalis E, et al. J. Mater. Chem., 2004, 14(14):2115-2123
-
[19]
[19] Ji B, Gao H. J. Mech. Phys. Solids, 2004, 52(9):1963-1990
-
[20]
[20] Gao H, Ji B, Jger I L, et al. Proc. Natl. Acad. Sci. U S A, 2003, 100(10):5597-5600
-
[21]
[21] Landis W J, Paine M C, Glimcher M J. J. Ultrastruc. Res., 1977, 59(1):1-30
-
[22]
[22] Gupta H S, Seto J, Wagermaier W, et al. Proc. Natl. Acad. Sci. U S A, 2006, 103(47):17741-17746
-
[23]
[23] Raisz L G, Kream B E. Annu. Rev. Physiol., 1981, 43(1): 225-238
-
[24]
[24] Raisz L G. Clin. Chem., 1999, 45(8):1353-1358
-
[25]
[25] Váábánen K. Adv. Drug Delivery Rev., 2005, 57(7):959-971
-
[26]
[26] Vallet-Regí M, González-Calbet J M. Prog. Solid State Chem., 2004, 32(1):1-31
-
[27]
[27] Okada M, Furuzono T. Sci. Technol. Adv. Mater., 2012, 13 (6):064103
-
[28]
[28] Yeong K, Wang J, Ng S. Biomaterials, 2001, 22(20):2705-2712
-
[29]
[29] Tas A C. J. Eur. Ceram. Soc., 2000, 20(14):2389-2394
-
[30]
[30] Suchanek W L, Shuk P, Byrappa K, et al. Biomaterials, 2002, 23(3):699-710
-
[31]
[31] Bezzi G, Celotti G, Landi E, et al. Mater. Chem. Phys., 2003, 78(3):816-824
-
[32]
[32] Sadat-Shojai M, Atai M, Nodehi A. J. Brazilian Chem. Soc., 2011, 22(3):571-582
-
[33]
[33] Ito H, Oaki Y, Imai H. Cryst. Growth Des., 2008, 8(3):1055-1059
-
[34]
[34] Hassenkam T, Fantner G E, Cutroni J A, et al. Bone, 2004, 35(1):4-10
-
[35]
[35] Wang X, Zhuang J, Peng Q, et al. Nature, 2005, 437(7055): 121-124
-
[36]
[36] Ingert D, Pileni M P. Adv. Funct. Mater., 2001, 11(2):136-139
-
[37]
[37] Zhang B, Li G, Zhang J, et al. Nanotechnology, 2003, 14(4): 443
-
[38]
[38] Zhang B, Davis S A, Mann S. Chem. Mater., 2002, 14(3): 1369-1375
-
[39]
[39] Douglas T, Young M. Nature, 1998, 393(6681):152-155
-
[40]
[40] Shenton W, Douglas T, Young M, et al. Adv. Mater., 1999, 11(3):253-256
-
[41]
[41] Bose S, Saha S K. Chem. Mater., 2003, 15(23):4464-4469
-
[42]
[42] Sun Y, Guo G, Tao D, et al. J. Phys. Chem. Solids, 2007, 68(3):373-377
-
[43]
[43] Shenton W, Pum D, Sleytr U B, et al. Nature, 1997, 389 (6651):585-587
-
[44]
[44] Carpick R W, Salmeron M. Chem. Rev., 1997, 97(4):1163-1194
-
[45]
[45] Cai Y, Liu Y, Yan W, et al. J. Mater. Chem., 2007, 17(36): 3780-3787
-
[46]
[46] Fowler C E, Li M, Mann S, et al. J. Mater. Chem., 2005, 15 (32):3317-3325
-
[47]
[47] Penn R L, Banfield J F. Am. Mineral, 1998, 83(9/10):1077-1082
-
[48]
[48] Niederberger M, Clfen H. Phys. Chem. Chem. Phys., 2006, 8(28):3271-3287
-
[49]
[49] Tao J, Zhou D, Zhang Z, et al. Proc. Natl. Acad. Sci. U S A, 2009, 106(52):22096-22101
-
[50]
[50] Tao J, Pan H, Zeng Y, et al. J. Phys. Chem. B, 2007, 111 (47):13410-13418
-
[51]
[51] Weiner S, Traub W, Wagner H D. J. Struct. Biol., 1999, 126(3):241-255
-
[52]
[52] Yuasa T, Miyamoto Y, Ishikawa K, et al. Biomaterials, 2004, 25(7):1159-1166
-
[53]
[53] Shu R, McMullen R, Baumann M, et al. J. Biomed. Mater. Res. A, 2003, 67(4):1196-1204
-
[54]
[54] Balasundaram G, Sato M, Webster T J. Biomaterials, 2006, 27(14):2798-2805
-
[55]
[55] Hu Q, Tan Z, Liu Y, et al. J. Mater. Chem., 2007, 17(44): 4690-4698
-
[56]
[56] Webster T J, Ergun C, Doremus R H, et al. Biomaterials, 2000, 21(17):1803-1810
-
[57]
[57] Liu X, Smith L A, Hu J, et al. Biomaterials, 2009, 30(12): 2252-2258
-
[58]
[58] Rezwan K, Chen Q, Blaker J, et al. Biomaterials, 2006, 27 (18):3413-3431
-
[59]
[59] Robinson C, Connell S, Kirkham J, et al. J. Mater. Chem., 2004, 14(14):2242-2248
-
[60]
[60] Li L, Pan H, Tao J, et al. J. Mater. Chem., 2008, 18(34): 4079-4084
-
[61]
[61] Bernardi G. Coll. Intern. CNRS, 1975, 230:463-465
-
[62]
[62] Luo Y, Ling Y, Guo W, et al. J. Controlled Release, 2010, 147(2):278-288
-
[63]
[63] Uskokovi V, Uskokovi D P. J Biomed. Mater. Res. B: Appl. Biomater., 2011, 96(1):152-191
-
[64]
[64] Cai Y, Pan H, Xu X, et al. Chem. Mater., 2007, 19(13): 3081-3083
-
[65]
[65] Yang P, Quan Z, Li C, et al. Biomaterials, 2008, 29(32): 4341-4347
-
[66]
[66] Chen W, Xiao Y, Liu X, et al. Chem. Commun., 2013, 49: 4932-4934
-
[67]
[67] Chen C, Okayama H. Biotechnique, 1987, 6(7):632-638
-
[68]
[68] Dorozhkin S V. Biomaterials, 2010, 31(7):1465-1485
-
[69]
[69] Zhu S, Huang B, Zhou K, et al. J. Nanopart. Res., 2004, 6 (2):307-311
-
[70]
[70] Hossain S, Stanislaus A, Chua M J, et al. J. Controlled Release, 2010, 147(1):101-108
-
[71]
[71] Wang B, Liu P, Jiang W, et al. Angew. Chem. Int. Ed., 2008, 47(19):3560-3564
-
[72]
[72] Wang G, Li X, Mo L, et al. Angew. Chem. Int. Ed., 2012, 124(42), 10728-10731
-
[73]
[73] Wang W, Itoh S, Tanaka Y, et al. Acta Biomater., 2009, 5 (8):3132-3140
-
[74]
[74] Itoh S, Nakamura S, Nakamura M, et al. Biomaterials, 2006, 27(32):5572-5579
-
[75]
[75] Kumar D, Gittings J, Turner I, et al. Acta Biomater., 2010, 6(4):1549-1554
-
[76]
[76] Tran N, Webster T J. J. Mater. Chem., 2010, 20(40):8760-8767
-
[77]
[77] Tran N, Webster T J. Acta Biomater., 2011, 7(3):1298-1306
-
[78]
[78] Hou C H, Hou S M, Hsueh Y S, et al. Biomaterials, 2009, 30(23):3956-3960
-
[79]
[79] Wu H C, Wang T W, Bohn M C, et al. Adv. Funct. Mater., 2010, 20(1):67-77
-
[80]
[80] Rauschmann M A, Wichelhaus T A, Stirnal V, et al. Biomaterials, 2005, 26(15):2677-2684
-
[81]
[81] Chen W, Liu Y, Courtney H, et al. Biomaterials, 2006, 27 (32):5512-5517
-
[82]
[82] Rameshbabu N, Kumar N S, Prabhakar T, et al. J. Biomed. Mater. Res. A, 2007, 80(3):581-591
-
[83]
[83] Zhang M, Liu J K, Miao R, et al. Nanoscale Res. Lett., 2010, 5(4):675-679
-
[84]
[84] Li L, Liu Y, Tao J, et al. J. Phys. Chem. C, 2008, 112(32): 12219-12224
-
[1]
-
-
-
[1]
Junjian Wang , Qingquan Yu , Shunyao Liu , Yuke Chen , Xiaoyu Liu , Guodong Li , Xiaoyan Liu , Hong Liu , Weijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024
-
[2]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[3]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[4]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[5]
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
-
[6]
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
-
[7]
Mochou GAO , Shan MENG , Jinzhong ZHANG , Wenhua FENG , Shuo DONG , Jianping CHEN , Yanbao ZHAO , Laigui YU , Rongrong YING , Xueyan ZOU . Dual‐surface capped hydroxyapatite nano‐amendment with tuned alternate long‐short chain configuration for efficient adsorption towards multi‐heavy metal ions in complex‐contaminated systems. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1427-1438. doi: 10.11862/CJIC.20240431
-
[8]
Lixing ZHANG , Yaowen WANG , Xu HAN , Junhong ZHOU , Jinghui WANG , Liping LI , Guangshe LI . Research progress in the synthesis of fluorine-containing perovskites and their derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1689-1701. doi: 10.11862/CJIC.20250007
-
[9]
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
-
[10]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[11]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[12]
Cuicui Yang , Bo Shang , Xiaohua Chen , Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066
-
[13]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[14]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[15]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045
-
[16]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[17]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[18]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[19]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[20]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[1]
Metrics
- PDF Downloads(517)
- Abstract views(1108)
- HTML views(189)