Citation: XIAO Chong, LI Zhou, XIE Yi*. Synergistic Optimization of Electrical and Thermal Transport Properties in Chalcogenides Thermoelectric Materials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 10-19. doi: 10.11862/CJIC.2014.071 shu

Synergistic Optimization of Electrical and Thermal Transport Properties in Chalcogenides Thermoelectric Materials

  • Received Date: 27 September 2013
    Available Online: 6 November 2013

    Fund Project:

  • Over the past few years, thermoelectric materials have redrawn considerable attentions among physics, chemistry, and materials researchers due to their capability of direct conversion between heat and electricity, which is today well recognized as viable renewable-energy sources. However, it is still one of the biggest challenges hitherto to independently optimize these three parameters for obtaining high-performance thermoelectric materials with large ZT value. Chalcogenide semiconductors as the most important class of thermoelectric materials, the synergistic optimization of their electrical-thermal transport properties has attracted widespread attentions. Herein, we reviewed the latest development of the synergistic optimization in Chalcogenide semiconductors. We also analyzed the inherent physical mechanisms within the synergistic optimization. Finally, we summarized the prospects of these new strategies in thermoelectric materials development.
  • 加载中
    1. [1]

      [1] Wise M, Calvin K, Thomson A, et al. Science, 2009, 324 (5931):1183-1186

    2. [2]

      [2] Wood C. Rep. Prog. Phys., 1988, 51(4):459-539

    3. [3]

      [3] Bell L E. Science, 2008, 321(5895):1457-1461

    4. [4]

      [4] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433-448

    5. [5]

      [5] Tritt T M, Subramanian M A. MRS Bull., 2006, 31(3):188-198

    6. [6]

      [6] Snyder G J, Toberer E S. Nat. Mater., 2008, 7(2):105-114

    7. [7]

      [7] Shakouri A. Annu. Rev. Mater. Res., 2011, 41:399-431

    8. [8]

      [8] Mahan G D, Bartkowiak M. Appl. Phys. Lett., 1999, 74(7): 953-954

    9. [9]

      [9] Rao C N R. Acc. Chem. Res., 1984, 17(3):83-89

    10. [10]

      [10] Imada M, Fujimori A, Tokura Y. Rev. Modern. Phys., 1998, 70(4):1039-1263

    11. [11]

      [11] Wu C Z, Feng F, Feng J, et al. J. Am. Chem. Soc., 2011, 133(35):13798-13801

    12. [12]

      [12] Kobayashi M. Solid State Ionics., 1990, 39(3-4):121-149

    13. [13]

      [13] Santhosh K M C, Pradeep B. Semicond. Sci. Technol., 2002, 17(3):261-265

    14. [14]

      [14] Wiegers G A. Am. Mineral., 1971, 56(11-12):1882-1888

    15. [15]

      [15] Billetter H, Ruschewitz U. Z. Anorg. Allg. Chem., 2008, 634 (2):241-246

    16. [16]

      [16] Xiao C, Xu J, Li K, et al. J. Am. Chem. Soc., 2012, 134(9): 4287-4293

    17. [17]

      [17] Xiao C, Qin, X M, Zhang J, et al. J. Am. Chem. Soc., 2012, 134(44):18460-18466

    18. [18]

      [18] Slack G A. CRC Handbook of Thermoelectric. Boca Raton: Chemical Rubber, 1995.

    19. [19]

      [19] Snyder G J, Christensen M, Nishibor E, et al. Nat. Mater., 2004, 3(7):458-463

    20. [20]

      [20] Xiao C, Xu J, Cao B X, et al. J. Am. Chem. Soc., 2012, 134 (18):7971-7977

    21. [21]

      [21] Goto Y, Naito F, Sato R. Inorg. Chem., 2013, 52(17):9861-9866

    22. [22]

      [22] Liu H L, Shi X, Xu F F, et al. Nat. Mater., 2012, 11(5):422-425

    23. [23]

      [23] Larson P, Mahanti S D, Kanatzidis M G. Phys. Rev. B, 2000, 61(12):8162-8171

    24. [24]

      [24] Youn S J, Freeman A J. Phys. Rev. B, 2000, 63(8):085112

    25. [25]

      [25] Sun Y F, Cheng H, Gao S, et al. J. Am. Chem. Soc., 2012, 134(50):20294-20297

    26. [26]

      [26] Hicks L D, Harman T C, Dresselhaus M S. Appl. Phys. Lett., 1993, 63(23):3230-3232

    27. [27]

      [27] Klemens P G. Proc. Phys. Soc. London Sec. A, 1955, 68(12): 1113-1128

    28. [28]

      [28] Carruthers P. Rev. Mod. Phys., 1961, 33(1):92-138

    29. [29]

      [29] Dismukes J P, Ekstrom L, Steigmeier E F, et al. J. Appl. Phys., 1964, 35(10):2899-2907

    30. [30]

      [30] Slack G A, Hussain M A. J. Appl. Phys., 1991, 70(5):2694-2718

    31. [31]

      [31] Cahill D G, Watanabe F, Rockett A, et al. Phys. Rev. B, 2005, 71(23):235202

    32. [32]

      [32] Yu C, Scullin M L, Huijben M, et al. Appl. Phys. Lett., 2008, 92(19):191911

    33. [33]

      [33] Vineis C J, Shakouri A, Majumdar A, et al. Adv. Mater., 2010, 22(36):3970-3980

    34. [34]

      [34] Rowe D M, Shukla V S, Savvides N, Nature, 1981, 290(5809): 765-766

    35. [35]

      [35] Vining C B, Laskow W, Hanson J O, et al. J. Appl. Phys., 1991, 69(8):4333-4340

    36. [36]

      [36] Chen G. Phys. Rev. B, 1998, 57(23):14958-14973

    37. [37]

      [37] Mi J L, Zhu T J, Zhao X B, et al. J. Appl. Phys., 2007, 101 (5):054314

    38. [38]

      [38] Bux S K, Blair R G, Gogna P K, et al. Adv. Funct. Mater., 2009, 19(12):2445-2452

    39. [39]

      [39] Biswas K, He J Q, Blum I D, et al. Nature, 2012, 489(7416): 414-418

    40. [40]

      [40] Disalvo F J. Science, 1999, 285(5428):703-706

    41. [41]

      [41] Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press, 1964.

    42. [42]

      [42] Ravich Y I, Efimova B A, Smirnov I A. Semiconducting Lead Chalcogenides. New York: Plenum Press, 1970.

    43. [43]

      [43] Sitter H, Lischka K, Heinrich H. Phys. Rev. B, 1977, 16(2): 680-687

    44. [44]

      [44] Ravich Y I. In Lead Chalcogenides: Physics and Applica-tions: Ch.1. New York: Taylor & Fransics Group, 2003.

    45. [45]

      [45] Hoang K S, Mahanti D, Kanatzidis M G. Phys. Rev. B, 2010, 81(11):115106

    46. [46]

      [46] Pei Y Z, Shi X, LaLonde A, et al. Nature, 2011, 473(7345): 66-69

    47. [47]

      [47] Rhyee J S, Lee K H, Lee S M, et al. Nature, 2009, 459(7249): 965-968

    48. [48]

      [48] Rhyee J S, Ahn K, Lee K H, et al. Adv. Mater., 2011, 23 (19):2191-2194

    49. [49]

      [49] Zhu G H, Lan Y C, Wang H, et al. Phys. Rev. B, 2011, 83 (11):115201

    50. [50]

      [50] Kim J H, Rhyee J S, Kwon Y S. Phys. Rev. B, 2012, 86(23): 235101

    51. [51]

      [51] Ahn K, Cho E, Rhyee J S, et al. J. Mater. Chem., 2012, 22 (12):5730-5736

    52. [52]

      [52] Alivisatos A P. Science, 1996, 271(5251):933-937

    53. [53]

      [53] Dresselhaus M S, Chen G, Tang M Y, et al. Adv. Mater., 2007, 19(8):1043-1053

    54. [54]

      [54] Brus L E. J. Phys. Chem., 1986, 90(12):2555-2560

    55. [55]

      [55] Henglein A. Top. Curr. Chem., 1988, 143:113-119

    56. [56]

      [56] Steigerwald M L, Brus L E. Annu. Reu. Mater. Sci., 1989, 19:471-495

    57. [57]

      [57] Steigerwald M L, Brus L E. Acc. Chem. Res., 1990, 23(6): 183-188

    58. [58]

      [58] Halperin W P. Rev. Mod. Phys., 1986, 58(3):533-606

    59. [59]

      [59] Ball P, Garwin L. Nature, 1992, 355:761-766

    60. [60]

      [60] Goldstein A N, Echer C M, Alivisatos A P. Science, 1992, 256(5062):1425-1427

    61. [61]

      [61] Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590):2229-2232

    62. [62]

      [62] Ikeda T, Collins L A, Ravi V A, et al. Chem. Mater., 2007, 19(4):763-767

    63. [63]

      [63] Zhao Y, Dyck J S, Hernandez B M, et al. J. Am. Chem. Soc., 2010, 132(14):4982-4983

    64. [64]

      [64] Chen J, Zhang G, Li B W. Nano Lett., 2010, 10(10):3978-3983

    65. [65]

      [65] Scheele M, Oeschler N, Veremchuk I, et al. ACS Nano, 2010, 4(7):4283-4291

    66. [66]

      [66] Poudeu P F P, Güeguen A, Wu C I, et al. Chem. Mater., 2010, 22(3):1046-1053

    67. [67]

      [67] Zhang Y C, Wang H, Kraemer S, et al. ACS Nano, 2011, 5 (4):3158-3165

    68. [68]

      [68] Soni A, Zhao Y Y, Yu L G, et al. Nano Lett., 2012, 12(3): 1203-1209

    69. [69]

      [69] Soni A, Shen Y Q, Yin M, et al. Nano Lett., 2012, 12(8): 4305-4310

    70. [70]

      [70] Mehta R J, Zhang Y L, Karthik C, et al. Nat. Mater., 2012, 11(3):233-240

    71. [71]

      [71] Liu Y, Zhao L D, Liu Y C. J. Am. Chem. Soc., 2011, 133 (50):20112-20115

    72. [72]

      [72] Pei Y L, He J Q, Li J F. NPG Asia Mater., 2013, 5:e47

    73. [73]

      [73] Li F, Li J F, Zhao L D. Energy Environ. Sci., 2012, 5(5): 7188-7195

    74. [74]

      [74] Li J, Sui J H, Pei Y L. Energy Environ. Sci., 2012, 5(9):8543-8547

    75. [75]

      [75] Barreteau C, Berardan D, Amzallag E. Chem. Mater., 2012, 24(16):3168-3178

  • 加载中
    1. [1]

      Shuang WangXiaoqi FuShanshan Yao . Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials. Acta Physico-Chimica Sinica, 2026, 42(5): 100206-0. doi: 10.1016/j.actphy.2025.100206

    2. [2]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    5. [5]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    6. [6]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    7. [7]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    8. [8]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    9. [9]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    15. [15]

      Qiwen Chen Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136

    16. [16]

      Jiaxi Xu Yuan Ma . Stable Conformation of Several Common Aromatic Compounds. University Chemistry, 2025, 40(12): 183-186. doi: 10.12461/PKU.DXHX202508007

    17. [17]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    20. [20]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

Metrics
  • PDF Downloads(599)
  • Abstract views(1523)
  • HTML views(165)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return