Citation:
XIAO Chong, LI Zhou, XIE Yi*. Synergistic Optimization of Electrical and Thermal Transport Properties in Chalcogenides Thermoelectric Materials[J]. Chinese Journal of Inorganic Chemistry,
;2014, 30(1): 10-19.
doi:
10.11862/CJIC.2014.071
-
Over the past few years, thermoelectric materials have redrawn considerable attentions among physics, chemistry, and materials researchers due to their capability of direct conversion between heat and electricity, which is today well recognized as viable renewable-energy sources. However, it is still one of the biggest challenges hitherto to independently optimize these three parameters for obtaining high-performance thermoelectric materials with large ZT value. Chalcogenide semiconductors as the most important class of thermoelectric materials, the synergistic optimization of their electrical-thermal transport properties has attracted widespread attentions. Herein, we reviewed the latest development of the synergistic optimization in Chalcogenide semiconductors. We also analyzed the inherent physical mechanisms within the synergistic optimization. Finally, we summarized the prospects of these new strategies in thermoelectric materials development.
-
-
-
[1]
[1] Wise M, Calvin K, Thomson A, et al. Science, 2009, 324 (5931):1183-1186
-
[2]
[2] Wood C. Rep. Prog. Phys., 1988, 51(4):459-539
-
[3]
[3] Bell L E. Science, 2008, 321(5895):1457-1461
-
[4]
[4] Tritt T M. Annu. Rev. Mater. Res., 2011, 41:433-448
-
[5]
[5] Tritt T M, Subramanian M A. MRS Bull., 2006, 31(3):188-198
-
[6]
[6] Snyder G J, Toberer E S. Nat. Mater., 2008, 7(2):105-114
-
[7]
[7] Shakouri A. Annu. Rev. Mater. Res., 2011, 41:399-431
-
[8]
[8] Mahan G D, Bartkowiak M. Appl. Phys. Lett., 1999, 74(7): 953-954
-
[9]
[9] Rao C N R. Acc. Chem. Res., 1984, 17(3):83-89
-
[10]
[10] Imada M, Fujimori A, Tokura Y. Rev. Modern. Phys., 1998, 70(4):1039-1263
-
[11]
[11] Wu C Z, Feng F, Feng J, et al. J. Am. Chem. Soc., 2011, 133(35):13798-13801
-
[12]
[12] Kobayashi M. Solid State Ionics., 1990, 39(3-4):121-149
-
[13]
[13] Santhosh K M C, Pradeep B. Semicond. Sci. Technol., 2002, 17(3):261-265
-
[14]
[14] Wiegers G A. Am. Mineral., 1971, 56(11-12):1882-1888
-
[15]
[15] Billetter H, Ruschewitz U. Z. Anorg. Allg. Chem., 2008, 634 (2):241-246
-
[16]
[16] Xiao C, Xu J, Li K, et al. J. Am. Chem. Soc., 2012, 134(9): 4287-4293
-
[17]
[17] Xiao C, Qin, X M, Zhang J, et al. J. Am. Chem. Soc., 2012, 134(44):18460-18466
-
[18]
[18] Slack G A. CRC Handbook of Thermoelectric. Boca Raton: Chemical Rubber, 1995.
-
[19]
[19] Snyder G J, Christensen M, Nishibor E, et al. Nat. Mater., 2004, 3(7):458-463
-
[20]
[20] Xiao C, Xu J, Cao B X, et al. J. Am. Chem. Soc., 2012, 134 (18):7971-7977
-
[21]
[21] Goto Y, Naito F, Sato R. Inorg. Chem., 2013, 52(17):9861-9866
-
[22]
[22] Liu H L, Shi X, Xu F F, et al. Nat. Mater., 2012, 11(5):422-425
-
[23]
[23] Larson P, Mahanti S D, Kanatzidis M G. Phys. Rev. B, 2000, 61(12):8162-8171
-
[24]
[24] Youn S J, Freeman A J. Phys. Rev. B, 2000, 63(8):085112
-
[25]
[25] Sun Y F, Cheng H, Gao S, et al. J. Am. Chem. Soc., 2012, 134(50):20294-20297
-
[26]
[26] Hicks L D, Harman T C, Dresselhaus M S. Appl. Phys. Lett., 1993, 63(23):3230-3232
-
[27]
[27] Klemens P G. Proc. Phys. Soc. London Sec. A, 1955, 68(12): 1113-1128
-
[28]
[28] Carruthers P. Rev. Mod. Phys., 1961, 33(1):92-138
-
[29]
[29] Dismukes J P, Ekstrom L, Steigmeier E F, et al. J. Appl. Phys., 1964, 35(10):2899-2907
-
[30]
[30] Slack G A, Hussain M A. J. Appl. Phys., 1991, 70(5):2694-2718
-
[31]
[31] Cahill D G, Watanabe F, Rockett A, et al. Phys. Rev. B, 2005, 71(23):235202
-
[32]
[32] Yu C, Scullin M L, Huijben M, et al. Appl. Phys. Lett., 2008, 92(19):191911
-
[33]
[33] Vineis C J, Shakouri A, Majumdar A, et al. Adv. Mater., 2010, 22(36):3970-3980
-
[34]
[34] Rowe D M, Shukla V S, Savvides N, Nature, 1981, 290(5809): 765-766
-
[35]
[35] Vining C B, Laskow W, Hanson J O, et al. J. Appl. Phys., 1991, 69(8):4333-4340
-
[36]
[36] Chen G. Phys. Rev. B, 1998, 57(23):14958-14973
-
[37]
[37] Mi J L, Zhu T J, Zhao X B, et al. J. Appl. Phys., 2007, 101 (5):054314
-
[38]
[38] Bux S K, Blair R G, Gogna P K, et al. Adv. Funct. Mater., 2009, 19(12):2445-2452
-
[39]
[39] Biswas K, He J Q, Blum I D, et al. Nature, 2012, 489(7416): 414-418
-
[40]
[40] Disalvo F J. Science, 1999, 285(5428):703-706
-
[41]
[41] Goldsmid H J. Thermoelectric Refrigeration. New York: Plenum Press, 1964.
-
[42]
[42] Ravich Y I, Efimova B A, Smirnov I A. Semiconducting Lead Chalcogenides. New York: Plenum Press, 1970.
-
[43]
[43] Sitter H, Lischka K, Heinrich H. Phys. Rev. B, 1977, 16(2): 680-687
-
[44]
[44] Ravich Y I. In Lead Chalcogenides: Physics and Applica-tions: Ch.1. New York: Taylor & Fransics Group, 2003.
-
[45]
[45] Hoang K S, Mahanti D, Kanatzidis M G. Phys. Rev. B, 2010, 81(11):115106
-
[46]
[46] Pei Y Z, Shi X, LaLonde A, et al. Nature, 2011, 473(7345): 66-69
-
[47]
[47] Rhyee J S, Lee K H, Lee S M, et al. Nature, 2009, 459(7249): 965-968
-
[48]
[48] Rhyee J S, Ahn K, Lee K H, et al. Adv. Mater., 2011, 23 (19):2191-2194
-
[49]
[49] Zhu G H, Lan Y C, Wang H, et al. Phys. Rev. B, 2011, 83 (11):115201
-
[50]
[50] Kim J H, Rhyee J S, Kwon Y S. Phys. Rev. B, 2012, 86(23): 235101
-
[51]
[51] Ahn K, Cho E, Rhyee J S, et al. J. Mater. Chem., 2012, 22 (12):5730-5736
-
[52]
[52] Alivisatos A P. Science, 1996, 271(5251):933-937
-
[53]
[53] Dresselhaus M S, Chen G, Tang M Y, et al. Adv. Mater., 2007, 19(8):1043-1053
-
[54]
[54] Brus L E. J. Phys. Chem., 1986, 90(12):2555-2560
-
[55]
[55] Henglein A. Top. Curr. Chem., 1988, 143:113-119
-
[56]
[56] Steigerwald M L, Brus L E. Annu. Reu. Mater. Sci., 1989, 19:471-495
-
[57]
[57] Steigerwald M L, Brus L E. Acc. Chem. Res., 1990, 23(6): 183-188
-
[58]
[58] Halperin W P. Rev. Mod. Phys., 1986, 58(3):533-606
-
[59]
[59] Ball P, Garwin L. Nature, 1992, 355:761-766
-
[60]
[60] Goldstein A N, Echer C M, Alivisatos A P. Science, 1992, 256(5062):1425-1427
-
[61]
[61] Harman T C, Taylor P J, Walsh M P, et al. Science, 2002, 297(5590):2229-2232
-
[62]
[62] Ikeda T, Collins L A, Ravi V A, et al. Chem. Mater., 2007, 19(4):763-767
-
[63]
[63] Zhao Y, Dyck J S, Hernandez B M, et al. J. Am. Chem. Soc., 2010, 132(14):4982-4983
-
[64]
[64] Chen J, Zhang G, Li B W. Nano Lett., 2010, 10(10):3978-3983
-
[65]
[65] Scheele M, Oeschler N, Veremchuk I, et al. ACS Nano, 2010, 4(7):4283-4291
-
[66]
[66] Poudeu P F P, Güeguen A, Wu C I, et al. Chem. Mater., 2010, 22(3):1046-1053
-
[67]
[67] Zhang Y C, Wang H, Kraemer S, et al. ACS Nano, 2011, 5 (4):3158-3165
-
[68]
[68] Soni A, Zhao Y Y, Yu L G, et al. Nano Lett., 2012, 12(3): 1203-1209
-
[69]
[69] Soni A, Shen Y Q, Yin M, et al. Nano Lett., 2012, 12(8): 4305-4310
-
[70]
[70] Mehta R J, Zhang Y L, Karthik C, et al. Nat. Mater., 2012, 11(3):233-240
-
[71]
[71] Liu Y, Zhao L D, Liu Y C. J. Am. Chem. Soc., 2011, 133 (50):20112-20115
-
[72]
[72] Pei Y L, He J Q, Li J F. NPG Asia Mater., 2013, 5:e47
-
[73]
[73] Li F, Li J F, Zhao L D. Energy Environ. Sci., 2012, 5(5): 7188-7195
-
[74]
[74] Li J, Sui J H, Pei Y L. Energy Environ. Sci., 2012, 5(9):8543-8547
-
[75]
[75] Barreteau C, Berardan D, Amzallag E. Chem. Mater., 2012, 24(16):3168-3178
-
[1]
-
-
-
[1]
Shuang Wang , Xiaoqi Fu , Shanshan Yao . Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials. Acta Physico-Chimica Sinica, 2026, 42(5): 100206-0. doi: 10.1016/j.actphy.2025.100206
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[3]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[4]
Nan Xiao , Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099
-
[5]
Qishen Wang , Changzhao Chen , Mengqing Li , Lingmin Wu , Kai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147
-
[6]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
-
[7]
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
-
[8]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[9]
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
-
[10]
. . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.
-
[11]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[12]
Ying Xiong , Guangao Yu , Lin Wu , Qingwen Liu , Houjin Li , Shuanglian Cai , Zhanxiang Liu , Xingwen Sun , Yuan Zheng , Jie Han , Xin Du , Chengshan Yuan , Qihan Zhang , Jianrong Zhang , Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079
-
[13]
Yongjian Zhang , Fangling Gao , Hong Yan , Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035
-
[14]
Yerong Chen , Bingbin Yang , Xinglei He , Yuqi Lin , Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054
-
[15]
Qiwen Chen , Baolei Wang . Research Progress on One-Electron σ-Bond of Organic Compounds. University Chemistry, 2025, 40(11): 191-198. doi: 10.12461/PKU.DXHX202412136
-
[16]
Jiaxi Xu , Yuan Ma . Stable Conformation of Several Common Aromatic Compounds. University Chemistry, 2025, 40(12): 183-186. doi: 10.12461/PKU.DXHX202508007
-
[17]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[18]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[19]
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
-
[20]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[1]
Metrics
- PDF Downloads(599)
- Abstract views(1523)
- HTML views(165)
Login In
DownLoad: