Citation: QIAN Xue-Min, LIU Hui-Biao*, LI Yu-Liang*. Field Emission Property of Aggregate Structures Based on Molecular Materials[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(1): 62-74. doi: 10.11862/CJIC.2014.070 shu

Field Emission Property of Aggregate Structures Based on Molecular Materials

  • Received Date: 16 September 2013
    Available Online: 7 November 2013

    Fund Project:

  • Field emission has been widely used in many areas, such as scanning electron microscopy, plane display device, pressure sensor, acceleration sensor and electron beam addressed memory devices etc. Molecular materials are potential candidates for future field emission cathode materials, due to their notable characteristics of adjustable structures and energy bands, flexible nature, and easy processing. In this work, we will review some field emission properties of aggregation structure based molecular materials, especially, the effects of size and morphology based on field emission properties of molecular materials are described in detailed. The aim of review provides an intuition for understanding the structure-function relationships in molecular materials, which could lead to new design concepts for the development of new high field emission performance molecular materials on aggregate nanostructures.
  • 加载中
    1. [1]

      [1] Fowler R H, Nordheim L W. Proc. R. Soc. London, Ser. A, 1928, 119:173-177

    2. [2]

      [2] Shoulders K R. Adv. Comp., 1961, 2(135):138-141

    3. [3]

      [3] Spindt C A. J. Appl. Phys., 1968, 39:3504-3505

    4. [4]

      [4] LIU Min(刘敏), LEI Wei(雷威), ZHANG Xiao-Bin(张晓兵), et al. Chin. J. Elec. Dev.(电子器件), 2003, 26(4):428-433

    5. [5]

      [5] Musa I, Munindrasdasa D A I, Amaratunga G A J. Eccleston W. Nature, 1998, 395(6700):362-365

    6. [6]

      [6] Melmed A J, Müller E W. J. Chem. Phys., 1958, 29(5):1037-1041

    7. [7]

      [7] Müller E W Z. Naturforsch, 1955, 27:290

    8. [8]

      [8] Chen J, Wei A X, Zheng H Y, et al. Chinese. Phys. Lett., 1997, 14(12):949-952

    9. [9]

      [9] Hara T, Onoe J, Takeuchi K. J. Appl. Phys., 2002, 92(12): 7302-7305

    10. [10]

      [10] Czerwosz E, Dluzewski P, Gieraltowski W, et al. J. Vac. Sci. Technol. B., 2000, 18(2):1064-1067

    11. [11]

      [11] Chiu J J, Kei C C, Perng T P, et al. Adv. Mater., 2003, 15 (16):1361-1364

    12. [12]

      [12] Chiu J J, Wang W S, Kei C C, et al. Appl. Phys. Lett., 2003, 83(22):4607-4609

    13. [13]

      [13] Cho C P, Perng T P. Nanotechnology, 2007, 18(12):1252021-1252025

    14. [14]

      [14] Chun-Pei Cho a, Tsong-Pyng P. Org. Electron., 2010, 11: 115-122

    15. [15]

      [15] Hu J S, Ji H X, Cao A M, et al. Chem. Commun., 2007, 29: 3083-3085

    16. [16]

      [16] Xu G, Tang Y B, Tsang C H, et al. J. Mater. Chem., 2010, 20:3006-3010

    17. [17]

      [17] Liu H B, Zhao Q, Li Y L, et al. J. Am. Chem. Soc., 2005, 127(4):1120-1121

    18. [18]

      [18] Cui S, Liu H B, Gan L B, et al. Adv. Mater., 2008, 20:2918-2925

    19. [19]

      [19] Liu H B, Xu J L, Li Y J, et al. Acc. Chem. Res., 2010, 43 (12):1496-1508

    20. [20]

      [20] Liu H B, Wu X C, Chi L F, et al. J. Phys. Chem. C., 2008, 112(45):17625-17630

    21. [21]

      [21] Liu H B, Liu Z, Qian X M, et al. Cryst. Growth Des., 2010, 10(1):237-243

    22. [22]

      [22] Ouyang C B, Guo Y B, Liu H B, et al. J. Phys. Chem. C, 2009, 113(17):7044-7051

    23. [23]

      [23] Ouyang C B, Qian X M, Wang K, et al. Dalton Trans., 2012, 41(47):14391-14396

    24. [24]

      [24] Ouyang C B, Liu H B, Qian X M, et al. Dalton Trans., 2011, 40(14):3553-3557

    25. [25]

      [25] Cui S, Li Y L, Guo Y B, et al. Adv. Mater., 2008, 20(2):309-313

    26. [26]

      [26] Huang C S, Zhang Y, Liu H B, et al. J. Phys. Chem. C, 2007, 111(9):3544-3547

    27. [27]

      [27] Wei Z M, Huang C S, Liu Y L, et al. J. Nanosci. Nanotechno., 2009, 11(9):6565-6568

    28. [28]

      [28] Zheng H Y, Li Y J, Liu H B, et al. Chem. Soc. Rev., 2011, 40(9):4506-4524

    29. [29]

      [29] Mizukami H, Ojima M, Hiwatashi S, et al. Jap. J. Appl. Phys. Part 2: Lett. Express Lett., 2005, 44(24/25/26/27):L851-L853

    30. [30]

      [30] Fujii A, Mizukami H, Hiwatashi, et al. Jap. J. Appl. Phys. Part 2: Lett. Express Lett., 2005, 44(12/13/14/15):L388-L390

    31. [31]

      [31] Chen J, Xu J B, Xue K, et al. Microelectron. Reliab., 2005, 45(1):137-142

    32. [32]

      [32] Suen S C, Whang W T, Hou F J, et al. Org. Electron., 2006, 7(5):428-434

    33. [33]

      [33] Huang K J, Hsiao Y S, Whang W T. Org. Electron., 2011, 12:1826-1834

    34. [34]

      [34] Huang K J, Hsiao Y S, Huang J H, et al. J. Mater. Chem., 2012, 22:7837-7844

    35. [35]

      [35] Tong W Y, Li Z X, Djurisic A B, et al. Mater. Lett., 2007, 61(18):3842-3846

    36. [36]

      [36] Batabyal S K, Peedikakkal A M P, Ramakrishna S, et al. Macromol. Rapid. Commun., 2009, 30:1356-1361

    37. [37]

      [37] Suen S C, Whang W T, Hou F J, et al. Org. Electron., 2007, 8(5):505-512

    38. [38]

      [38] Huang K J, Hsiao Y S, Whang W T. Org. Electron., 2011, 12:686693

    39. [39]

      [39] Liu H B, Cui S, Guo Y B, et al. J. Mat. Chem., 2009, 19: 1031-1036

    40. [40]

      [40] Wang C W, Wang Z, Li M K, et al. Chem. Phys. Lett., 2001, 341(5/6):431-434

    41. [41]

      [41] Yan H L, Zhang L, Shen J Y, et al. Nanotechnology, 2006, 17(14):3446-3450

    42. [42]

      [42] Huang W Y, Liu C H, Chen J, et al. J. Vac. Sci. Technol. B, 2007, 25(2):604-607

    43. [43]

      [43] Gan H Y, Liu H B, Li Y J, et al. J. Am. Chem. Soc., 2005, 127(36):12452-12453

    44. [44]

      [44] Zhou W D, Li Y L, Zhu D B. Chem. Asia J., 2007, 2(2):222-229

    45. [45]

      [45] Li G X, Li Y L, Qian X M, et al. J. Phys. Chem. C, 2011, 115(6):2611-2615

    46. [46]

      [46] Zhang L, Wang K, Qian X M, et al. ACS Appl. Mater. Inter., 2013, 5(7):27612766

    47. [47]

      [47] Gu F, Sow C H, Xu G Q, et al. J. Chem., 2009, 62(9):1007-1013

    48. [48]

      [48] Kim J, Choi J, Son Y, et al. Mol. Cryst. Liq. Cryst., 2007, 462:117-126

    49. [49]

      [49] Kim K H, Son Y, Lee Y, et al. Mol. Cryst. Liq. Cryst., 2007, 472:467-476

    50. [50]

      [50] Ionov A N, Popov E O, Svetlichnyi V M, et al. Surf. Interface. Anal., 2007, 39:159-160

    51. [51]

      [51] Alexandrou I, Kymakis E, Amaratunga G A. J. Appl. Phys. Lett., 2002, 80(8):1435-1437

    52. [52]

      [52] Watts P C P, Lyth S M, Mendoza E, et al. Appl. Phys. Lett., 2006, 89(10):103113

    53. [53]

      [53] Poa C H, Silva S R P, Watts W K, et al. Appl. Phys. Lett., 2002, 80(17):3189

    54. [54]

      [54] Poa C H P, Smith R C, Silva S R P, et al. J. Vac. Sci. Technol. B., 2003, 21(4):1715-1719

    55. [55]

      [55] Smith R C, Carey J D, Murphy R J, et al. Appl. Phys. Lett., 2005, 87(26):63105

    56. [56]

      [56] Poa C H P, Smith R C, Poa, C H P, et al. J. Vac. Sci. Technol. B, 2005, 23(2):698-701

    57. [57]

      [57] Itoh E, Kato Y, Miyairi K. Jpn. J. Appl. Phys., 2005, 47: 2016-2020

    58. [58]

      [58] Chen G T, Su S H, Yokoyama M. Electrochem. Sol. ST., 2007, 10(3):J41-J44

    59. [59]

      [59] Li C S, Yokoyama M, Su S H. Electrochem. Sol. ST 2008, 11(1):J1-J3

    60. [60]

      [60] Guo Y B, Liu H B, Li Y J, et al. J. Phys. Chem. C, 2009, 113:1266912673

    61. [61]

      [61] Chen N, Qian X M, Lin H W, et al. J. Mater. Chem., 2012, 22(22):11068-11072

    62. [62]

      [62] Kymissis I, Akinwande A I. Appl. Phys. Lett., 2003, 82(14): 2347-2349

    63. [63]

      [63] Kymissis I, Akinwande A I. Ieee Trans. Elec. Dev., 2005, 52(8):1907-1914

    64. [64]

      [64] Kim B H, Kim M S, Park K T, et al. Appl. Phys. Lett., 2003, 83(3):539-541

    65. [65]

      [65] Kim B H, Park D H, Joo J, et al. Synth. Met., 2005, 150(3): 279-284

    66. [66]

      [66] Joo J, Kim B H, Park D H, et al. Synth. Met., 2005, 153(1/2/3):313-316

    67. [67]

      [67] Joo J, Lee S J, Park D H, et al. Electrochem. Solid, 2005, 8 (4):H39-H41

    68. [68]

      [68] Joo J, Park S K, Seo D S, et al. Adv. Funct. Mater., 2005, 15(9):1465-1470

    69. [69]

      [69] Lai G H, Li Z L, Cheng, L, et al. J. Mater. Sci. Technol., 2006, 22(5):677-680

    70. [70]

      [70] Peng J B, Huang W B, Zhu Z S, et al. Synth. Met, 2003, 135(1/2/3):193-195

    71. [71]

      [71] LAI Guo-Hong(赖国洪), PENG Jun-Biao(彭俊彪), LI Zheng-Lin(李政林), et al. Chin. J. Lumin.(发光学报), 2005, 26(1):105-108

    72. [72]

      [72] PENG Jun-Biao(彭俊彪), CHENG Lan(程兰), LAI Guo-Hong(赖国洪), et al. J. South Chin. Univ. Technol.Nat. Sci. Edit.(华南理工大学学报:自然科学版), 2005, 33(12): 1-4

    73. [73]

      [73] YU Huang-Zhong(於黄中), PENG Jun-Biao(彭俊彪). Mater. Rev.(材料导报), 2005, 19(1):86-89

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    18. [18]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(577)
  • Abstract views(694)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return