Citation: ZHOU Xin, YAO Ai-Hua, ZHOU Tian, WANG De-Ping. Synthesis of Caron Nanobutes@SiO2@Ag Nanocomposites for Surface-Enhanced Raman Scattering[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 543-549. doi: 10.11862/CJIC.2014.058 shu

Synthesis of Caron Nanobutes@SiO2@Ag Nanocomposites for Surface-Enhanced Raman Scattering

  • Received Date: 29 July 2013
    Available Online: 28 September 2013

    Fund Project: 国家自然科学基金(No.50702037) (No.50702037)上海市自然科学基金(13RZ1444200) (13RZ1444200)

  • With SiO2 acting as an interlinker, multiwalled carbon nanotubes (MWCNTs) were grafted with Ag nanoparticles to form CNTs@SiO2@Ag nancomposites. The microstructure, morphology and composition of the nanocomposites were characterized by TEM, XRD, UV-Vis, XPS. Meanwhile, surface-enhanced Raman scattering (SERS) effect of the nanocomposites was also studied. The results show that Ag nanoparticles effectively improve SERS activity of CNTs, and compared with the pure CNTs, the Raman peak intensities of the nanocomposite increase by 5 times. Furthermore, the SERS activity of the nanocomposite was investigated using Rhodamine 6G (R6G) as the probe molecules. It is found that the SERS signal intensity and quality of the R6G molecules are obviously improved. The high SERS sensitivity of the nanocomposite make it a suitable substrate for noninvasive biomedical detection.
  • 加载中
    1. [1]

      [1] Chu H B, Wei L, Cui R L, et al. Coord. Chem. Rev., 2010, 254:1117-1134

    2. [2]

      [2] NIU Yang(钮洋), LIU Qing-Hai(刘清海), YANG Juan(杨娟), et al. Acta Chim. Sin.(化学学报), 2012,70:1532-1537

    3. [3]

      [3] Ding K L, Hu B J, Xie Y, et al. J. Mater. Chem., 2009,19: 3725-3731

    4. [4]

      [4] Guo S J, Li J, Ren W, et al. Chem. Mater., 2009,21:2247-2257

    5. [5]

      [5] Yang K H, Liu Y C, Yu C C. J. Mater. Chem., 2008,18:4849 -4855

    6. [6]

      [6] Lu Z C, Ruan W D, Yang J X, et al. J. Raman Spectrosc., 2009,40:112-116

    7. [7]

      [7] Zavaleta C L, Smith B R, Walton I, et al. PNAS, 2009,106 (32):13511-13516

    8. [8]

      [8] Keren S, Zavaleta C, Cheng Z, et al. PNAS, 2008,105(15): 5844-5849

    9. [9]

      [9] Zavaleta C, Zerda A de la, Liu Z, et al. Nano Lett., 2008,8 (9):2800-2805

    10. [10]

      [10] Shi Y, Liu Z L, Zhao B, et al. J. Electroanal. Chem., 2011, 656:29-33

    11. [11]

      [11] Sun Y G, Xia Y N. Analyst, 2003,128:686-691

    12. [12]

      [12] Guo S J, Dong S J, Wang E K. J. Phys. Chem. C, 2008,112: 2389-2393

    13. [13]

      [13] Salgueirino-Maceira V, Caruso F, Liz-Marzan L M. J. Phys. Chem. B, 2003,107:10990-10994

    14. [14]

      [14] XIAO Gui-Na(肖桂娜), MAN Shi-Qing(满石清), LIU Ying-Liang(刘应亮), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2007,23(10):1738-1742

    15. [15]

      [15] Steinigeweg D, Schlucker S. Chem. Commun., 2012,48:8682 -8684

    16. [16]

      [16] Qian X F, Lü Y Y, Li W, et al. J. Mater. Chem., 2011,21: 13025-13031

    17. [17]

      [17] ZHAO Hong(赵红). Thesis for the Doctorate of Harbin Institute of Technology(哈尔滨工业大学博士论文). 2011.

    18. [18]

      [18] Wilder J W G, Venema L C, Rinzler A G. Nature, 1998, 391:59-62

    19. [19]

      [19] Murphy H, Papakonstantinou P, Okpalugo T I. J. Vacum. Sci. Technol. B, 2006,24(2):715-720

    20. [20]

      [20] Xin F, Li L. Composites: Part A, 2011,42:961-967

    21. [21]

      [21] Campion A, Kambhampati P. Chem. Soc. Rev., 1998,27:241 -250

    22. [22]

      [22] Tiwari V S, Oleg T, Darbha G K, et al. Chem. Phy. Lett., 2007,446:77-82

  • 加载中
    1. [1]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    5. [5]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    15. [15]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    16. [16]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    20. [20]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

Metrics
  • PDF Downloads(0)
  • Abstract views(462)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return