Citation: XIAO Mi, YANG Zhao, ZHONG Xiao-Rong, XI Fang-Fang. Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 649-653. doi: 10.11862/CJIC.2014.054 shu

Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics

  • Received Date: 3 July 2013
    Available Online: 26 September 2013

  • The effect of Bi2O3 doping on the structure and dielectric properties of Ag(Nb0.8Ta0.2)O3 ceramics was investigated in this paper. The results of X-ray diffraction (XRD) showed that the doping of Bi2O3 could tend to accelerate the reduction of Ag, which may originate from the substitution of Bi3+ for Ag+. A certain doping amount of Bi2O3 would result in the increase of dielectric constant, and the decrease of dielectric loss of Ag(Nb0.8Ta0.2)O3 ceramics at room temperature, and making temperature coefficient shift for negative direction. The reason for the improvement of dielectric properties was also discussed. When the amount of Bi2O3 was about 3.5wt%, the sample had the best dielectric properties, larger permittivity (ε=672) and smaller dielectric loss (tanδ=7.3×10-4).
  • 加载中
    1. [1]

      [1] Valant M, Suvorov D. J. Am. Ceram. Soc., 1999,82(1):81-87

    2. [2]

      [2] Valant M, Suvorov D. J. Am. Ceram. Soc., 1999,82(1):88-93

    3. [3]

      [3] GUO Xiu-Ying(郭秀英), XIAO Mi(肖谧), WU Xia-Wan(吴 霞宛), et al. J. Wuhan Univ. Tech.-Mater. Sci. Ed.(武汉工 业大学学报), 2007,22(3):518-521

    4. [4]

      [4] Zimmermann F, Menesklou W, Ivers-Tiffee E. J. Eur. Ceram. Soc., 2004,24(6):1811-1814

    5. [5]

      [5] You H W, Koh J H. Microelectron. J., 2007,38:222-226

    6. [6]

      [6] Petzelt J, Kamba S, Buixaderas E, et al. J. Am. Ceram. Soc.,2007,90(8):2467-2471

    7. [7]

      [7] Paweczyk M. Phase Transitions, 1987,8(4):273-292

    8. [8]

      [8] Valant M, Suvorov D, Hoffmann C, et al. J. Eur. Ceram. Soc., 2001,21(15):2647-2651

    9. [9]

      [9] Lei C, Ye Z G. Appl. Phys. Lett., 2008,93(4):042901-042901

    10. [10]

      [10] Kania A. J. Phys. D: Appl. Phys., 2001,34:1447-1455

    11. [11]

      [11] Sakabe Y, Takeda T, Ogiso Y, et al. Jpn. J. Appl. Phys., 2001,40(9B):5675-5678

    12. [12]

      [12] Guo X Y, Xiao M, Ding W, et al. Mater. Lett., 2006,60(29): 3651-3654

    13. [13]

      [13] Guo X Y, Zhu N, Xiao M, et al. J. Am. Ceram. Soc., 2007, 90(8):2467-2471

    14. [14]

      [14] Verwerft M, Van D D, Brabers, et al. Phys. Stat. Sol. A: Appl. Res., 1989,112(2):451-466

    15. [15]

      [15] GUO Xiu-Ying(郭秀英), XIAO Mi(肖谧), WU Xia-Wan(吴 霞宛), et al. J. Tianjin Univ.(天津大学学报), 2006,12(1):28 -32

    16. [16]

      [16] Halder N, Sharma Das A, Khan S K, et al. Mater. Res. Bull., 1999,34(4):545-550

    17. [17]

      [17] Chen R Z, Wang X H, Wen H, et al. Ceram. Inter., 2004, 30:1271-1274

    18. [18]

      [18] Huang J Q, Cao Y G, Hong M C. Appl. Phys. Lett., 2008, 92:022911

    19. [19]

      [19] Kim W S, Hong T H, Kim E S, et al. Jpn. J. Appl. Phys., 1998,37:5367-5371

    20. [20]

      [20] Ogawa H, Taketani H, Kan A, et al. J. Eur. Ceram. Soc., 2005,25:2859-2863

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    19. [19]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    20. [20]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

Metrics
  • PDF Downloads(0)
  • Abstract views(219)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return