Citation: CHEN Hao-Ying, ZHANG Rui-Zhi, ZHAO Pei, CAO Li-Ke. Influence of the Layer Thickness on the Thermoelectric Properties of TiS2 Nanosheets:a Theoretical Study[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 506-510. doi: 10.11862/CJIC.2014.050 shu

Influence of the Layer Thickness on the Thermoelectric Properties of TiS2 Nanosheets:a Theoretical Study

  • Received Date: 1 July 2013
    Available Online: 1 October 2013

    Fund Project: 国家自然科学基金(No.11104220) (No.11104220)陕西省自然科学基础研究计划(No.2011JQ1012) (No.2011JQ1012)陕西省教育厅自然科学基金专项(No.11JK0522)资助 项目。 (No.11JK0522)

  • With the discovery of graphene, two dimensional nanosheets are of great interest due to their novel physics. Among these 2D systems, transition metal sulficid nanosheets with strong correlated nature and ample compositional variations attract more and more attention. Here, by using density functional theory calculations and semi-classic Boltzmann transport equations, we investigated the influence of layer thickness on thermoelectric properties of TiS2 nanosheets, whose courtpart bulk material already shows some promising thermoelectric performance. Our theoretical results show that when the thickness is greater than the critical thickness for electronic quantum confinement and also is smaller than the critical thickness for phonon confinement, the TiS2 nanosheets will have better thermoelectric performance than its counterpart bulk. These finding is helpful for design novel high performance thermoelectric materials.
  • 加载中
    1. [1]

      [1] Rogers J A, Lagally M G, Nuzzo R G. Nature, 2011,477:45-53

    2. [2]

      [2] Nicolosi V, Chhowalla M, Kanatzidis M, et al. Science, 2013,340:1226419-18

    3. [3]

      [3] Butler S Z, Butler S Z, Hollen S M, et al. ACS Nano, 2013, 7:2898-2926

    4. [4]

      [4] Radisavljevic B, Radenovic A, Brivio J, et al. Nat. Nano, 2011,6:147-150

    5. [5]

      [5] Kuc A, Zibouche N, Heine T, et al. Phys. Rev. B, 2011,83: 245213-4

    6. [6]

      [6] Molina-Sánchez A, Wirtz L. Phys. Rev. B, 2011,84:155413-8

    7. [7]

      [7] Scalise E, Houssa M, Pourtois G, et al. Nano Res., 2012,5:43-48

    8. [8]

      [8] Ramasubramaniam A, Naveh D, Towe E, et al. Phys. Rev. B, 2011,84:205325-10

    9. [9]

      [9] Chhowalla M, Shin H S, Eda G, et al. Nat. Chem., 2013,5: 263-275

    10. [10]

      [10] Dresselhaus M, Chen G, Tang M, et al. Adv. Mater., 2007, 19:1043-1053

    11. [11]

      [11] Hicks L D, Dresselhaus M S. Phys. Rev. B, 1993,47:12727-12731

    12. [12]

      [12] Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001,413:597-602

    13. [13]

      [13] Balandin A, Wang K L. Phys. Rev. B, 1998,58:1544-1549

    14. [14]

      [14] Imai H, Shimakawa Y, Kubo Y. Phys. Rev. B, 2001,64: 241104(4pages)

    15. [15]

      [15] Koumoto K, Wang Y F, Zhang R Z, et al. Ann. Rev. Mater. Res., 2010,40:363-394

    16. [16]

      [16] LU Yan(卢艳), SONG Ying(宋英), SUN Qiu(孙秋), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009,25:1682 -1685

    17. [17]

      [17] Zhang R Z, Wan C L, Wang Y F, et al. Phys. Chem. Chem. Phys., 2012,14:15641-15644

    18. [18]

      [18] Giannozzi P, Baroni S, Bonini N, et al. J. Phys.: Conden. Mat., 2009,21:395502(19pages)

    19. [19]

      [19] Sanchez K, Palacios P, Wahnon P. Phys. Rev. B, 2008,78: 235121(6pages)

    20. [20]

      [20] Kukkonen C A, Kaiser W J, Logothetis E M, et al. Phys. Rev. B, 1981,24:1691-1709

    21. [21]

      [21] Madsen G K H, Singh D J. Comput. Phys. Commun., 2006, 175:67-71

    22. [22]

      [22] Wiegers G A. Prog. Solid State Chem., 1996,24:1-139

    23. [23]

      [23] Mak K F, Lee C, Hone J, et al. Phys. Rev. Lett., 2010,105: 136805(4pages)

    24. [24]

      [24] Snyder G J, Toberer E S. Nat. Mater., 2008,7:105-114

    25. [25]

      [25] Ohta H, Kim S, Mune Y, et al. Nat. Mater., 2007,6:129-134

    26. [26]

      [26] Pallecchi I, Codda M, Galleani E, et al. Phys. Rev. B, 2010, 81:085414(9pages)

    27. [27]

      [27] Wang Y, Lee K H, Hyuga H, et al. Appl. Phys. Lett., 2007, 91:242102(3pages)

    28. [28]

      [28] Liu X J, Zhang G, Pei Q X, et al. Appl. Phys. Lett., 2013, 103:133113(4pages)

    29. [29]

      [29] Zhang R Z, Li J C, Wang C L, et al. J. Am. Ceram. Soc., 2010,93:1677-1681

  • 加载中
    1. [1]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    4. [4]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    10. [10]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    11. [11]

      Xianfei Chen Wentao Zhang Haiying Du . Experimental Design of Computational Materials Science Based on Scientific Research Cases. University Chemistry, 2025, 40(3): 52-61. doi: 10.3866/PKU.DXHX202403112

    12. [12]

      Xianggui Kong Wenying Shi . Comprehensive Chemical Experimental Design of Optically Encrypted Materials. University Chemistry, 2025, 40(3): 355-362. doi: 10.12461/PKU.DXHX202406067

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    18. [18]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    19. [19]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    20. [20]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

Metrics
  • PDF Downloads(0)
  • Abstract views(457)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return