Citation: CHEN Hao-Ying, ZHANG Rui-Zhi, ZHAO Pei, CAO Li-Ke. Influence of the Layer Thickness on the Thermoelectric Properties of TiS2 Nanosheets:a Theoretical Study[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(3): 506-510. doi: 10.11862/CJIC.2014.050 shu

Influence of the Layer Thickness on the Thermoelectric Properties of TiS2 Nanosheets:a Theoretical Study

  • Received Date: 1 July 2013
    Available Online: 1 October 2013

    Fund Project: 国家自然科学基金(No.11104220) (No.11104220)陕西省自然科学基础研究计划(No.2011JQ1012) (No.2011JQ1012)陕西省教育厅自然科学基金专项(No.11JK0522)资助 项目。 (No.11JK0522)

  • With the discovery of graphene, two dimensional nanosheets are of great interest due to their novel physics. Among these 2D systems, transition metal sulficid nanosheets with strong correlated nature and ample compositional variations attract more and more attention. Here, by using density functional theory calculations and semi-classic Boltzmann transport equations, we investigated the influence of layer thickness on thermoelectric properties of TiS2 nanosheets, whose courtpart bulk material already shows some promising thermoelectric performance. Our theoretical results show that when the thickness is greater than the critical thickness for electronic quantum confinement and also is smaller than the critical thickness for phonon confinement, the TiS2 nanosheets will have better thermoelectric performance than its counterpart bulk. These finding is helpful for design novel high performance thermoelectric materials.
  • 加载中
    1. [1]

      [1] Rogers J A, Lagally M G, Nuzzo R G. Nature, 2011,477:45-53

    2. [2]

      [2] Nicolosi V, Chhowalla M, Kanatzidis M, et al. Science, 2013,340:1226419-18

    3. [3]

      [3] Butler S Z, Butler S Z, Hollen S M, et al. ACS Nano, 2013, 7:2898-2926

    4. [4]

      [4] Radisavljevic B, Radenovic A, Brivio J, et al. Nat. Nano, 2011,6:147-150

    5. [5]

      [5] Kuc A, Zibouche N, Heine T, et al. Phys. Rev. B, 2011,83: 245213-4

    6. [6]

      [6] Molina-Sánchez A, Wirtz L. Phys. Rev. B, 2011,84:155413-8

    7. [7]

      [7] Scalise E, Houssa M, Pourtois G, et al. Nano Res., 2012,5:43-48

    8. [8]

      [8] Ramasubramaniam A, Naveh D, Towe E, et al. Phys. Rev. B, 2011,84:205325-10

    9. [9]

      [9] Chhowalla M, Shin H S, Eda G, et al. Nat. Chem., 2013,5: 263-275

    10. [10]

      [10] Dresselhaus M, Chen G, Tang M, et al. Adv. Mater., 2007, 19:1043-1053

    11. [11]

      [11] Hicks L D, Dresselhaus M S. Phys. Rev. B, 1993,47:12727-12731

    12. [12]

      [12] Venkatasubramanian R, Siivola E, Colpitts T, et al. Nature, 2001,413:597-602

    13. [13]

      [13] Balandin A, Wang K L. Phys. Rev. B, 1998,58:1544-1549

    14. [14]

      [14] Imai H, Shimakawa Y, Kubo Y. Phys. Rev. B, 2001,64: 241104(4pages)

    15. [15]

      [15] Koumoto K, Wang Y F, Zhang R Z, et al. Ann. Rev. Mater. Res., 2010,40:363-394

    16. [16]

      [16] LU Yan(卢艳), SONG Ying(宋英), SUN Qiu(孙秋), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009,25:1682 -1685

    17. [17]

      [17] Zhang R Z, Wan C L, Wang Y F, et al. Phys. Chem. Chem. Phys., 2012,14:15641-15644

    18. [18]

      [18] Giannozzi P, Baroni S, Bonini N, et al. J. Phys.: Conden. Mat., 2009,21:395502(19pages)

    19. [19]

      [19] Sanchez K, Palacios P, Wahnon P. Phys. Rev. B, 2008,78: 235121(6pages)

    20. [20]

      [20] Kukkonen C A, Kaiser W J, Logothetis E M, et al. Phys. Rev. B, 1981,24:1691-1709

    21. [21]

      [21] Madsen G K H, Singh D J. Comput. Phys. Commun., 2006, 175:67-71

    22. [22]

      [22] Wiegers G A. Prog. Solid State Chem., 1996,24:1-139

    23. [23]

      [23] Mak K F, Lee C, Hone J, et al. Phys. Rev. Lett., 2010,105: 136805(4pages)

    24. [24]

      [24] Snyder G J, Toberer E S. Nat. Mater., 2008,7:105-114

    25. [25]

      [25] Ohta H, Kim S, Mune Y, et al. Nat. Mater., 2007,6:129-134

    26. [26]

      [26] Pallecchi I, Codda M, Galleani E, et al. Phys. Rev. B, 2010, 81:085414(9pages)

    27. [27]

      [27] Wang Y, Lee K H, Hyuga H, et al. Appl. Phys. Lett., 2007, 91:242102(3pages)

    28. [28]

      [28] Liu X J, Zhang G, Pei Q X, et al. Appl. Phys. Lett., 2013, 103:133113(4pages)

    29. [29]

      [29] Zhang R Z, Li J C, Wang C L, et al. J. Am. Ceram. Soc., 2010,93:1677-1681

  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    5. [5]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    6. [6]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    9. [9]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    10. [10]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    11. [11]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

    12. [12]

      Yan Yuan Haitao Wu Yi Zhang Li Jiang Feng Cao Yanmao Dong . Research on the Talent Training System to Enhance the Core Competence of Employment for Undergraduate Students Majoring in Materials Chemistry. University Chemistry, 2024, 39(11): 52-56. doi: 10.12461/PKU.DXHX202402015

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(0)
  • Abstract views(380)
  • HTML views(83)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return