Citation: LIU Xiao-Feng, MI Chang-Huan, ZHANG Wen-Qing. Preparation and Electrochemical Lithium Storage of 3D α-Fe2O3/Nitrogen-Doped Graphene/Carbon Nanotubes Nanocomposites[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 242-250. doi: 10.11862/CJIC.2014.048 shu

Preparation and Electrochemical Lithium Storage of 3D α-Fe2O3/Nitrogen-Doped Graphene/Carbon Nanotubes Nanocomposites

  • Corresponding author: MI Chang-Huan, 
  • Received Date: 5 August 2013
    Available Online: 26 September 2013

    Fund Project:

  • To solve the main obstacles associated with the charge-discharge process of α-Fe2O3 anode, such as serious volume expansion and low initial coulombic efficiency, 3D porous α-Fe2O3/nitrogen-doped graphene(N-GNS)/carbon nanotubes(CNTs) nanocomposites were synthesized via a facile hydrothermal method. The nanocomposites were characterized by XRD, SEM, TEM and XPS measurements and the results indicated that CNTs were successfully inserted into the interlamination between N-GNS, providing more defects than pristine GNS for α-Fe2O3 nucleating and the lithium ion storage. α-Fe2O3 nanoparticles with an average size of 30~70 nm were uniformly anchored in 3D N-GNS/CNTs carbon matrix and reacted with lithium ion efficiently. The electrochemical test results showed that this 3D composite structure can significantly improve the electrochemical performance of α-Fe2O3/GNS anode.
  • 加载中
    1. [1]

      [1] Armand M, Tarascon J M. Nature, 2008,451:652-657

    2. [2]

      [2] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem., Int. Ed., 2008,47(16):2930-2946

    3. [3]

      [3] WANG Chong(王崇), WANG Dian-Long(王殿龙), WANG Qiu-Ming(王秋明), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2010,26(5):757-762

    4. [4]

      [4] Poizot P, Laruelle S, Grugeon S. Nature, 2000,407:496-499

    5. [5]

      [5] Morcrette M, Rozier P, Dupont L, et al. Nat. Mater., 2003,2: 755-761

    6. [6]

      [6] ZHAO Tie-Peng(赵铁鹏), GAO De-Shu(高德淑), LEI Gang-Tie(雷钢铁), et al. Acta Chim. Sinica(化学学报), 2009,67 (17):1957-1961

    7. [7]

      [7] ZHANG Ying(张颖), GAO Xue-Ping(高学平), HU Heng(胡 恒), et al. Chinese J. Inorg. Chem.(无机化学学报), 2004,20 (9):1013-1017

    8. [8]

      [8] Li H, Wang Z X, Huang X J, et al. Adv. Mater., 2009,21: 4593-4607

    9. [9]

      [9] Geim A K, Novoselov K S. Nat. Mater., 2007,6:183-191

    10. [10]

      [10] Zhu X J, Zhu Y W, Ruoff R S, et al. ACS Nano, 2011,5(4): 3333-3338

    11. [11]

      [11] XU Ke(徐科), SHEN Lai-Fa(申来法), ZHANG Xiao-Gang (张校刚), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2012, 28(1):105-110

    12. [12]

      [12] NIU Yu-Lian(牛玉莲), JIN Xin(金鑫), LI Zai-Jun(李在均), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(9): 1878-1884

    13. [13]

      [13] Cho Y J, Kim H S, Kang H S, et al. J. Phys. Chem. C, 2011,115(19):9451-9457

    14. [14]

      [14] Wu Z S, Ren W C, Xu L, et al. ACS Nano, 2011,5(7):5463-5471

    15. [15]

      [15] Shen L F, Zhang X G, Li H S, et al. J. Phys. Chem. L., 2011,2:3096-3101

    16. [16]

      [16] Beidaghi M, Wang C L. Adv. Funct. Mater., 2012,22(21): 4501-4510

    17. [17]

      [17] Bo Y, Wang L L, Yao L, et al. ChemComm., 2013,49:5016-5018

    18. [18]

      [18] Bo Y, Li N, Zhu H Y, et al. ChemSusChem., 2013,6(3):474-480

    19. [19]

      [19] Tang V C, Huang H J, Tevis I, et al. J. Am. Chem. Soc., 2011,133(24):4940-4947

    20. [20]

      [20] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80 (6):1339

    21. [21]

      [21] Wang B, Chen J S, Lou X W, et al. J. Am. Chem. Soc., 2011,133:17146-17148

    22. [22]

      [22] Du M, Xu C H, Sun J, et al. Electrochimica Acta, 2012,80: 302-307

    23. [23]

      [23] Wang D W, Li Y Q, Wang Q H, et al. J. Solid State Electrochem., 2012,16:2095-2102

    24. [24]

      [24] Guo H L, Wang X F, Xia X H, et al. ACS Nano, 2009,3(9): 2653-2659

    25. [25]

      [25] Xu C H, Sun J, Gao L. Nanoscale, 2012,4:5425-5430

    26. [26]

      [26] SU Peng(苏鹏), GUO Hui-Lin(郭慧林), PENG San(彭三), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2012,28:1-9

    27. [27]

      [27] LI Jing(李静), WANG Xian-Bao(王贤保), YANG Jia(杨佳), et al. Chem. J. Chinese Universities(高等学校化学学报), 2013,4(34):800-805

    28. [28]

      [28] Maier J. Nat. Mater., 2005,4(11):805-815

    29. [29]

      [29] Concha B N, Eugenio C, Carlos M G, et al. Nanoscale, 2012,4:3977-3982

    30. [30]

      [30] Li Y F, Zhou Z, Wang L B. J. Chem. Phys., 2008,129(10): 104703

    31. [31]

      [31] WU Chao(吴超), ZHUANG Quan-Chao(庄全超), XU Shou-Dong(徐守东), et al. Acta Chim. Sinica(化学学报), 2012,1 (70):51-57

    32. [32]

      [32] ZHANG Wan-Hong(张万红), YUE Min(岳敏). Chin. J. Power Sources.(电源技术), 2010,3(343):223-225

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    4. [4]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-0. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    9. [9]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    12. [12]

      Wen Tang Luyu Sui Qian Chen Jun Shao Xinwen Peng Jianwen Jiang Shuiliang Chen . Project-based Teaching of “the Condensed State of Polymers”: Unveiling the Lithium-Ion Battery Separator. University Chemistry, 2025, 40(11): 115-126. doi: 10.12461/PKU.DXHX202412108

    13. [13]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    14. [14]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Rongrong WangChen LiXiang RenKeliang ZhangYu SunXianzhong SunKai WangXiong ZhangYanwei Ma . Recent advances and challenges of eco-friendly Ni-rich cathode slurry systems in lithium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(4): 100222-0. doi: 10.1016/j.actphy.2025.100222

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(553)
  • Abstract views(1510)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return