Citation: DENG Long-Zheng, WU Feng, GAO Xu-Guang, XIE Hai-Ming, YANG Zhi-Wei. Effects of Coating Carbon Aluminum Foil on the Battery Performance[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 770-778. doi: 10.11862/CJIC.2014.047 shu

Effects of Coating Carbon Aluminum Foil on the Battery Performance

  • Corresponding author: WU Feng, 
  • Received Date: 12 July 2013
    Available Online: 25 September 2013

    Fund Project: 国家973项目(No.2009CB220100);动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013);高性能二次动力电池及关键材料;技术的合作研究(No.2010DFB63370);面向中美清洁能源合作的电动汽车前沿技术研究(No.2010DFA72760) (No.2009CB220100);动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013);高性能二次动力电池及关键材料;技术的合作研究(No.2010DFB63370);面向中美清洁能源合作的电动汽车前沿技术研究(No.2010DFA72760)中央高校基本科研业务费(No.12QNJJ013)资助项目。 (No.12QNJJ013)

  • The LiFePO4-based battery properties were studied by using aluminum foil current collector coated with a conductive carbon film. The main properties of LiFePO4 type battery with 10 Ah capacity were also compared by using common aluminum foil and coating carbon aluminum foil (CCAF) from different providers. The results showed that the using of CCAF current collector not only can improve the cohesiveness between the cathode powder and the current collector but can effectively reduce the contact resistance of the cathode material and the current collector, so as to reduce the direct current resistance (DCR) of the battery, and improve the rate performance of the battery. Compared with using common aluminum foil, the DCR is reduced by about 65% with using the CCAF as current collector. But the specific discharge capacity of cathode material is reduced by 5~10 mAh·g-1. And the 1st efficiency is also reduced by 4%; At large discharge rate of 15C rate, the discharge capacity of the cell with using CCAF is more than about 15% in contrast to the cell with common aluminum foil as a current collector. And at 10Cdischarge rate, the voltage plateau increased by 0.3~0.4 V with CCAF; But the self-discharge ratio of cell with CCAF is higher at room temperature, and its recovery rate of the capacity is also higher; After 500 cycles, the cyclic capability of the cell with using CCAFcan increase by about 2% in contrast to the cell with the common aluminum foil as current collector. But the discharge property at low temperature is not improved by the use of CCAF as current collector.
  • 加载中
    1. [1]

      [1] WU Yu-Ping(吴宇平), WAN Chun-Rong(万春荣), JIANG Chang-Yin(姜长印). Lithium Ion Secondary Batteries(锂离 子二次电池). Beijing: Chemical Industry Publishing House, 2002.

    2. [2]

      [2] Bruce P G. Solid State Ionics, 2008, 179(21/22/23/24/25/26): 752-760

    3. [3]

      [3] Armand M, Tarascon J. M. Nature, 2008, 451(2):652-657

    4. [4]

      [4] Ohzuku T, Brodd R. J. Power Sources, 2007, 174(2):449-456

    5. [5]

      [5] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electr-ochem Soc., 1997, 144(4):1188-1194

    6. [6]

      [6] Whittingham M S. Chem. Rev., 2004, 104(10):4271-4301

    7. [7]

      [7] Yamada A, Hosoya M, Chung S C, et al. J. Power Source, 2003, 119-121(1/2):232-238

    8. [8]

      [8] Chen Z H, Dahn J R. J. Electrochem. Soc., 2002, 149(9): A1184-1189

    9. [9]

      [9] Li Xiang-Yuan(李祥元). Thesis for the Masterate of Central South University(中南大学硕士论文). 2008.

    10. [10]

      [10] Takahashi M, Tobishima S I, Takei K, et. Solid State Ionics, 2002, 148:283-289

    11. [11]

      [11] Gao F, Tang Z Y. Electrochim. Acta, 2008, 53(15):5071-5075

    12. [12]

      [12] XU Meng-Qing(许梦清), ZUO Xiao-Xi(左晓希), LI Wei-Shan(李伟善), et al. Chin. J. Power Source(电源技术), 2006, 30(1):14-17

    13. [13]

      [13] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159(I): 702-707

    14. [14]

      [14] Lian X Z, Ma Z F, Gong Q, et al. Electrochem. Commun., 2008, 10(5):691-694

    15. [15]

      [15] XIE Xiao-Hua(谢晓华), CHEN Li-Bao(陈立宝), XIE Jing-Ying(解晶莹). Chin. J. Power Source(电源技术), 2007, 31 (7):576-577

    16. [16]

      [16] TONG Hui(童汇), HU Guo-Hua(胡国华), HU Guo-Rong(胡 国荣), et al. Chinese J. Inorg. Chem.(无机化学学报), 2006, 22(12):2159-2164

    17. [17]

      [17] Delacourt C, Wurm C, Laffont L, et al. Solid State Ionics, 2006, 177(3-4):333-341

    18. [18]

      [18] ZHANG Qiu-Ming(张秋明), QIAO Yu-Qing(乔玉卿), ZHAO Min-Shou(赵敏寿), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2012, 28(1):67-73

    19. [19]

      [19] Ravet N, Abouimrane A, Armand M, et al. Nature, 2003, 2 (11):702~703

    20. [20]

      [20] Zhuang D G, Zhao X B, Xie J, et al. Acta Physico-Chimica Sinica, 2006, 22(7):840-844

    21. [21]

      [21] LIANG Feng(梁风), DAI Yong-Nian(戴永年), YAO Yao-Chun(姚耀春). Chinese J. Inorg. Chem.(无机化学学报), 2010, 26(9):1675-1679

    22. [22]

      [22] Ong C W, Lin Y K, Chen J S. J. Electrochem. Soc., 2007, 154(6):A527-A533

    23. [23]

      [23] TANG Zhi-Yuan(唐致远), GAO Fei(高飞) XUE Jian-Jun(薛 建军). Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(8): 1415-1420

    24. [24]

      [24] YANG Shu-Ting(杨书廷), LIU Yu-Xia(刘玉霞), YIN Yan-Hong(尹艳红), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2007, 23(7):1165-1168

    25. [25]

      [25] Dominko R, Gaber

    26. [26]

      šcek M, Drofenik J, et al. J. Power Sources, 2003, 119/121:770-773

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    4. [4]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    13. [13]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    14. [14]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    15. [15]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    16. [16]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(0)
  • Abstract views(876)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return