Citation: DENG Long-Zheng, WU Feng, GAO Xu-Guang, XIE Hai-Ming, YANG Zhi-Wei. Effects of Coating Carbon Aluminum Foil on the Battery Performance[J]. Chinese Journal of Inorganic Chemistry, ;2014, 30(4): 770-778. doi: 10.11862/CJIC.2014.047 shu

Effects of Coating Carbon Aluminum Foil on the Battery Performance

  • Corresponding author: WU Feng, 
  • Received Date: 12 July 2013
    Available Online: 25 September 2013

    Fund Project: 国家973项目(No.2009CB220100);动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013);高性能二次动力电池及关键材料;技术的合作研究(No.2010DFB63370);面向中美清洁能源合作的电动汽车前沿技术研究(No.2010DFA72760) (No.2009CB220100);动力电池及化学能源材料北京市高等学校工程研究中心开放基金资助课题(2013);高性能二次动力电池及关键材料;技术的合作研究(No.2010DFB63370);面向中美清洁能源合作的电动汽车前沿技术研究(No.2010DFA72760)中央高校基本科研业务费(No.12QNJJ013)资助项目。 (No.12QNJJ013)

  • The LiFePO4-based battery properties were studied by using aluminum foil current collector coated with a conductive carbon film. The main properties of LiFePO4 type battery with 10 Ah capacity were also compared by using common aluminum foil and coating carbon aluminum foil (CCAF) from different providers. The results showed that the using of CCAF current collector not only can improve the cohesiveness between the cathode powder and the current collector but can effectively reduce the contact resistance of the cathode material and the current collector, so as to reduce the direct current resistance (DCR) of the battery, and improve the rate performance of the battery. Compared with using common aluminum foil, the DCR is reduced by about 65% with using the CCAF as current collector. But the specific discharge capacity of cathode material is reduced by 5~10 mAh·g-1. And the 1st efficiency is also reduced by 4%; At large discharge rate of 15C rate, the discharge capacity of the cell with using CCAF is more than about 15% in contrast to the cell with common aluminum foil as a current collector. And at 10Cdischarge rate, the voltage plateau increased by 0.3~0.4 V with CCAF; But the self-discharge ratio of cell with CCAF is higher at room temperature, and its recovery rate of the capacity is also higher; After 500 cycles, the cyclic capability of the cell with using CCAFcan increase by about 2% in contrast to the cell with the common aluminum foil as current collector. But the discharge property at low temperature is not improved by the use of CCAF as current collector.
  • 加载中
    1. [1]

      [1] WU Yu-Ping(吴宇平), WAN Chun-Rong(万春荣), JIANG Chang-Yin(姜长印). Lithium Ion Secondary Batteries(锂离 子二次电池). Beijing: Chemical Industry Publishing House, 2002.

    2. [2]

      [2] Bruce P G. Solid State Ionics, 2008, 179(21/22/23/24/25/26): 752-760

    3. [3]

      [3] Armand M, Tarascon J. M. Nature, 2008, 451(2):652-657

    4. [4]

      [4] Ohzuku T, Brodd R. J. Power Sources, 2007, 174(2):449-456

    5. [5]

      [5] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electr-ochem Soc., 1997, 144(4):1188-1194

    6. [6]

      [6] Whittingham M S. Chem. Rev., 2004, 104(10):4271-4301

    7. [7]

      [7] Yamada A, Hosoya M, Chung S C, et al. J. Power Source, 2003, 119-121(1/2):232-238

    8. [8]

      [8] Chen Z H, Dahn J R. J. Electrochem. Soc., 2002, 149(9): A1184-1189

    9. [9]

      [9] Li Xiang-Yuan(李祥元). Thesis for the Masterate of Central South University(中南大学硕士论文). 2008.

    10. [10]

      [10] Takahashi M, Tobishima S I, Takei K, et. Solid State Ionics, 2002, 148:283-289

    11. [11]

      [11] Gao F, Tang Z Y. Electrochim. Acta, 2008, 53(15):5071-5075

    12. [12]

      [12] XU Meng-Qing(许梦清), ZUO Xiao-Xi(左晓希), LI Wei-Shan(李伟善), et al. Chin. J. Power Source(电源技术), 2006, 30(1):14-17

    13. [13]

      [13] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159(I): 702-707

    14. [14]

      [14] Lian X Z, Ma Z F, Gong Q, et al. Electrochem. Commun., 2008, 10(5):691-694

    15. [15]

      [15] XIE Xiao-Hua(谢晓华), CHEN Li-Bao(陈立宝), XIE Jing-Ying(解晶莹). Chin. J. Power Source(电源技术), 2007, 31 (7):576-577

    16. [16]

      [16] TONG Hui(童汇), HU Guo-Hua(胡国华), HU Guo-Rong(胡 国荣), et al. Chinese J. Inorg. Chem.(无机化学学报), 2006, 22(12):2159-2164

    17. [17]

      [17] Delacourt C, Wurm C, Laffont L, et al. Solid State Ionics, 2006, 177(3-4):333-341

    18. [18]

      [18] ZHANG Qiu-Ming(张秋明), QIAO Yu-Qing(乔玉卿), ZHAO Min-Shou(赵敏寿), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2012, 28(1):67-73

    19. [19]

      [19] Ravet N, Abouimrane A, Armand M, et al. Nature, 2003, 2 (11):702~703

    20. [20]

      [20] Zhuang D G, Zhao X B, Xie J, et al. Acta Physico-Chimica Sinica, 2006, 22(7):840-844

    21. [21]

      [21] LIANG Feng(梁风), DAI Yong-Nian(戴永年), YAO Yao-Chun(姚耀春). Chinese J. Inorg. Chem.(无机化学学报), 2010, 26(9):1675-1679

    22. [22]

      [22] Ong C W, Lin Y K, Chen J S. J. Electrochem. Soc., 2007, 154(6):A527-A533

    23. [23]

      [23] TANG Zhi-Yuan(唐致远), GAO Fei(高飞) XUE Jian-Jun(薛 建军). Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(8): 1415-1420

    24. [24]

      [24] YANG Shu-Ting(杨书廷), LIU Yu-Xia(刘玉霞), YIN Yan-Hong(尹艳红), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2007, 23(7):1165-1168

    25. [25]

      [25] Dominko R, Gaber

    26. [26]

      šcek M, Drofenik J, et al. J. Power Sources, 2003, 119/121:770-773

  • 加载中
    1. [1]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    4. [4]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    5. [5]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Wenhui LiYakun TangYusheng ZhouYue ZhangWenhai ZhangQingtao MaLang LiuSen DongYuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119

    9. [9]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    10. [10]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    11. [11]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    12. [12]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    13. [13]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    17. [17]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(0)
  • Abstract views(1606)
  • HTML views(356)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return