Citation: YU Xiao-Jiao, HUANG Lin-Zhu, ZHANG Fan, YANG Qian, ZHAO Jie, YAO Bing-Hua. Cu2O Thin Film:Controllable Preparation and Performance for Photocatalytic Degradation of Methylene Blue[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 359-365. doi: 10.11862/CJIC.2014.041 shu

Cu2O Thin Film:Controllable Preparation and Performance for Photocatalytic Degradation of Methylene Blue

  • Corresponding author: YU Xiao-Jiao, 
  • Received Date: 13 September 2013
    Available Online: 25 October 2013

    Fund Project:

  • Various morphologies of Cu2O thin films were prepared on indium tin oxide (ITO) conducting glass using electrodeposition approach with diverse addictive agents. The obtained samples were characterized by XPS, XRD, SEMand UV-Vis spectroscopy to study the microstructure, morphology and optical properties of the films, respectively. The degradation of methylene blue over different morphologies of Cu2O thin films was evaluated in H2O2-Cu2O system. The results indicate that the as-prepared Cu2O micrometer crystals are of high-purity. More than 92.1% of methylene blue can be degraded in 3 h by Cu2O. Recycling results reveal that more than 92.4% of methylene blue can be decomposed within 8 cycles. And the degradation rate could still reach 82.4% after 11 cycles.
  • 加载中
    1. [1]

      [1] Martín L, Zarzalejo L F, Polo J, et al. Sol. Energy, 2010,84: 1772-1781

    2. [2]

      [2] Yao C Z, Wei B H, Meng L X, et al. J. Power Sources, 2012,207:222-228

    3. [3]

      [3] Robertson P K J, Robertson J M C, Bahnemann D W. J. Hazard. Mater., 2012,211-212:161-171

    4. [4]

      [4] Nakata K, Fujishima A. J. Photoch. Photobio. C, 2012,13(3): 169-189

    5. [5]

      [5] de Jongh P E, Vanmaekelbergh D, Kelly J J. Chem. Commun., 1999,12:1069-1070

    6. [6]

      [6] Sun W, Sun W D, Zhuo Y J, et al. J. Solid State Chem., 2011, 184(7):1638-1643

    7. [7]

      [7] Khan M A, Septina W, Ikeda S, et al. Thin Solid Films, 2012, 526:191-194

    8. [8]

      [8] Li L K, Xu L L, Shi W D, et al. Int. J. Hydrogen Energy, 2013,38(2):816-822

    9. [9]

      [9] Liu M M, Liu R, Chen W. Biosen. Bioelectron., 2013,45: 206-212

    10. [10]

      [10] Srivastava M, Singh J, Mishra R K, et al. J. Alloy. Compd., 2013,555:123-130

    11. [11]

      [11] ZHAO Hua-Tao(赵华涛), WANG Dong(王栋), ZHANG Lan- Yue(张兰月), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2009,25(1):142-146

    12. [12]

      [12] ZENG Xiao-Wei(曾小巍), ZHANG Yu-Hong(张玉红), LUO Cheng-Cai(骆成才), et al. Chinese J. Inorg. Chem. (无机化 学学报), 2005,21(10):1515-1519

    13. [13]

      [13] DONG Lei(董磊), YU Liang-Min(于良民),JIANG Xiao-Hui (姜晓辉), et al. Chinese J. Inorg. Chem. (无机化学学报), 2008,24(12):2013-2018

    14. [14]

      [14] ZOU Xiao-Lan(邹晓兰), YU Yan-Qing(于艳卿), LI Chao- Feng(李超峰), et al. Chinese J. Catal. (催化学报), 2011,32 (6):950-956

    15. [15]

      [15] Ahmed A, Gajbhiye N S, Joshi A G. Mater. Chem. Phys., 2011,129(3):740-745

    16. [16]

      [16] Zhang S S, Zhang S Q, Peng F, et al. Electrochem. Commun., 2011,13:861-864

    17. [17]

      [17] Ma L L, Li J L, Sun H Z, et al. Mater. Res. Bull., 2010,45 (8):961-968

    18. [18]

      [18] Dehghanpour S, Mahmoudi A, Mirsaeed-Ghazi M, et al. Powder Technol., 2013,246:148-156

    19. [19]

      [19] ZHU Jun-Wu (朱俊武), CHEN Hai-Qun(陈海群), XIE Bo (谢波) et al. Chinese J. Catal.(催化学报), 2004,25(8):637-640

    20. [20]

      [20] Huang L, Peng F, Wang H J, et al. Mater. Chem. Phys., 2011,130:316-322

    21. [21]

      [21] WANG Rong(王蓉), SHI Zhan-Hua(史占花), CAI Fang- Gong(蔡芳共), et al. Chem. J. Chinese Universities(高等学 校化学学报), 2012,33(4):768-771

    22. [22]

      [22] YAN Li-Li(闫丽丽), WANG Yan(王艳), XIONG Liang-Bin (熊良斌), et al. Chinese J. Inorg. Chem. (无机化学学报), 2009,25(11):1960-1964

    23. [23]

      [23] LIU Can(刘 灿), WEI Zi-Dong(魏子栋), ZHANG Qian (张骞), et al. J. Inorg. Mater.(无机材料学报), 2012,27(4): 395-399

    24. [24]

      [24] Lamberti A, Destro M, Bianco S, et al. Electrochim. Acta, 2012,86:323-329

    25. [25]

      [25] Georgieva V, Ristov M. Sol. Energy Mat. Sol. C, 2002,73(1): 67-73

    26. [26]

      [26] Xu L, Xu H Y, Wu S B, Zhang X Y. Appl. Surf. Sci., 2012, 258:4934-4938

    27. [27]

      [27] DENG Xing-Shen(邓型深), JIANG Ji-Qiong(姜吉琼), TIAN Tian(田甜). Electroplating & Finishing (电镀与涂饰), 2011,30(2):1-3

    28. [28]

      [28] Xu H L, Wang W Z, Zhu W. J. Phys. Chem. B, 2006,110: 13829-13834

    29. [29]

      [29] Ng C H B, Fan W Y. J. Phys. Chem. B, 2006,110(42): 20801-20807

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(403)
  • Abstract views(707)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return