Citation: CUI Xiao-Xi, MENG Fan-Hui, HE Zhong, LI Zhong, Zheng Hua-Yan. Effects of Additives on Sturcture and Methanation Performance of Ni-Based Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 277-283. doi: 10.11862/CJIC.2014.021 shu

Effects of Additives on Sturcture and Methanation Performance of Ni-Based Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 4 May 2013
    Available Online: 26 July 2013

    Fund Project:

  • Nickel-based catalysts were prepared with different metal promoters by incipient impregnation method, and the catalytic performance of CO methanation were studied in slurry-bed reactor. XRD, H2-TPR, and HR-TEM were used to characterize the catalysts, the results show that additives of Zr, Co, Ce, Zn, La improved the dispersion of Nickel species on support, and decreased the particle size of Ni and reduced the reduction temperature of catalyst, while the additive of Mg increased the reduction temperature. The catalytic results show that additives of Zr, Co, Ce, Zn, La improved the catalytic performance of CO methanation in slurry-bed reactor, especially the catalyst with La additive. Further investigation shows that when the loading of La reached 8%, the catalyst exhibited the best catalytic performance, with the conversion of CO of 96.3%, the selectivity and space-time yield (STY) of CH4 of 87.1% and 179.6 g·kg-1·h-1, respectively. While the catalyst doped with Mg additivie decreased the catalytic performance.
  • 加载中
    1. [1]

      [1] Kopyscinski J, Schildhauer T J, Biollaz S M A. Fuel, 2010,89 (8):1763-1783

    2. [2]

      [2] HE Zhong(何忠), CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), et al. Chem. Ind. Eng. Progress (化工进展), 2011,30 (S1):388-392

    3. [3]

      [3] CUI Xiao-Xi(崔晓曦), CAO Hui-Bo(曹会博), MENG Fan- Hui(孟凡会), et al. Nat. Gas Chem. Ind.(天然气化工), 2012,37(5):15-19

    4. [4]

      [4] Gao J, Wang Y, Ping Y, et al. RSC Adv, 2012,2(6):2358-2368

    5. [5]

      [5] HE Long(贺龙), WANG Yong-Gang(王永刚), GONG Wei-Bo (公维博), et al. Chem. Ind. Eng. Progress(化工进展), 2012,31(S1):311-314

    6. [6]

      [6] CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), ZHENG Hua-Yan (郑华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(3):495-502

    7. [7]

      [7] LUO Wei(罗伟), XU Zhen-Gang(徐振刚), WANG Nai-Ji (王乃继), et al. Coal Chem. Ind.(煤化工), 2008(5): 17-20

    8. [8]

      [8] HU Da-Cheng(胡大成), GAO Jia-Jian(高加俭), JIA Chu- Miao(贾春苗), et al. Chinese J. Process Eng.(过程工程学报), 2011,11(5):880-893

    9. [9]

      [9] Yan X, Liu Y, Zhao B, et al. Int. J. Hydrogen Energ., 2013,38(5):2283-2291

    10. [10]

      [10] Zhao A, Ying W, Zhang H, et al. Catal. Commun., 2012,17: 34-38

    11. [11]

      [11] da Silva D C D, Letichevsky S, Borges L E P, et al. Int. J. Hydrogen Energ., 2012,37(11):8923-8928

    12. [12]

      [12] Hwang S, Lee J, Hong U G, et al. J. Ind. Eng. Chem., 2011,17(1):154-157

    13. [13]

      [13] Li J, Zhou L, Li P, et al. Chem. Eng. J., 2013,219(0):183- 189

    14. [14]

      [14] Hwang S, Lee J, Hong U G, et al. J. Ind. Eng. Chem., 2012,18(1):243-248

    15. [15]

      [15] Liu J, Shen W, Cui D, et al. Catal. Commun, 2013,38(0):35- 39

    16. [16]

      [16] Yu Y, Jin G, Wang Y, Guo X. Catal. Commun., 2013,31(0): 5-10

    17. [17]

      [17] Wang Y, Wu R, Zhao Y. Catal. Today, 2010,158(3/4): 470-474

    18. [18]

      [18] Tian D, Liu Z, Li D, et al. Fuel, 2013,104:224-229

    19. [19]

      [19] Liu H, Zou X, Wang X, et al. J. Nat. Gas Chem., 2012,21 (6):703-707

    20. [20]

      [20] Zhi G, Guo X, Wang Y, et al. Catal. Commun., 2011,16(1): 56-59

    21. [21]

      [21] Krmer M, Stwe K, Duisberg M, et al. Appl. Catal. A: Gen, 2009,369(1/2):42-52

    22. [22]

      [22] Hu D, Gao J, Ping Y, et al. Ind. Eng. Chem. Res., 2012,51 (13):4875-4886

    23. [23]

      [23] Xie Y, Tang Y. Adv. Catal., 1990,37:1-43

    24. [24]

      [24] Ocampo F, Louis B, Kiwi-Minsker L, et al. Appl. Catal. A: Gen., 2011,392(1/2):36-44

    25. [25]

      [25] Zhang J, Xu H, Jin X, et al. Appl. Catal. A: Gen., 2005,290 (1/2):87-96

    26. [26]

      [26] ZHANG Yu-Hong(张玉红), XIONG Guo-Xing(熊国兴), SHENG Shi-Shan(盛世善), et al. Acta Phys.-Chem. Sin. (物理化学学报), 1999,15(8):735-741

    27. [27]

      [27] REN Shi-Biao(任世彪), QIU Jin-Heng(邱金恒), WANG Chun-Yan(王春燕), et al. Chinese J. Inorg. Chem. (无机化学学报), 2007,23(6):1021-1028

    28. [28]

      [28] Iriondo A, Barrio V, Cambra J, et al. Top. Catal., 2008,49 (1):46-58

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    12. [12]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    13. [13]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    14. [14]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(350)
  • Abstract views(1512)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return