Citation: CUI Xiao-Xi, MENG Fan-Hui, HE Zhong, LI Zhong, Zheng Hua-Yan. Effects of Additives on Sturcture and Methanation Performance of Ni-Based Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 277-283. doi: 10.11862/CJIC.2014.021 shu

Effects of Additives on Sturcture and Methanation Performance of Ni-Based Catalysts

  • Corresponding author: LI Zhong, 
  • Received Date: 4 May 2013
    Available Online: 26 July 2013

    Fund Project:

  • Nickel-based catalysts were prepared with different metal promoters by incipient impregnation method, and the catalytic performance of CO methanation were studied in slurry-bed reactor. XRD, H2-TPR, and HR-TEM were used to characterize the catalysts, the results show that additives of Zr, Co, Ce, Zn, La improved the dispersion of Nickel species on support, and decreased the particle size of Ni and reduced the reduction temperature of catalyst, while the additive of Mg increased the reduction temperature. The catalytic results show that additives of Zr, Co, Ce, Zn, La improved the catalytic performance of CO methanation in slurry-bed reactor, especially the catalyst with La additive. Further investigation shows that when the loading of La reached 8%, the catalyst exhibited the best catalytic performance, with the conversion of CO of 96.3%, the selectivity and space-time yield (STY) of CH4 of 87.1% and 179.6 g·kg-1·h-1, respectively. While the catalyst doped with Mg additivie decreased the catalytic performance.
  • 加载中
    1. [1]

      [1] Kopyscinski J, Schildhauer T J, Biollaz S M A. Fuel, 2010,89 (8):1763-1783

    2. [2]

      [2] HE Zhong(何忠), CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), et al. Chem. Ind. Eng. Progress (化工进展), 2011,30 (S1):388-392

    3. [3]

      [3] CUI Xiao-Xi(崔晓曦), CAO Hui-Bo(曹会博), MENG Fan- Hui(孟凡会), et al. Nat. Gas Chem. Ind.(天然气化工), 2012,37(5):15-19

    4. [4]

      [4] Gao J, Wang Y, Ping Y, et al. RSC Adv, 2012,2(6):2358-2368

    5. [5]

      [5] HE Long(贺龙), WANG Yong-Gang(王永刚), GONG Wei-Bo (公维博), et al. Chem. Ind. Eng. Progress(化工进展), 2012,31(S1):311-314

    6. [6]

      [6] CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), ZHENG Hua-Yan (郑华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(3):495-502

    7. [7]

      [7] LUO Wei(罗伟), XU Zhen-Gang(徐振刚), WANG Nai-Ji (王乃继), et al. Coal Chem. Ind.(煤化工), 2008(5): 17-20

    8. [8]

      [8] HU Da-Cheng(胡大成), GAO Jia-Jian(高加俭), JIA Chu- Miao(贾春苗), et al. Chinese J. Process Eng.(过程工程学报), 2011,11(5):880-893

    9. [9]

      [9] Yan X, Liu Y, Zhao B, et al. Int. J. Hydrogen Energ., 2013,38(5):2283-2291

    10. [10]

      [10] Zhao A, Ying W, Zhang H, et al. Catal. Commun., 2012,17: 34-38

    11. [11]

      [11] da Silva D C D, Letichevsky S, Borges L E P, et al. Int. J. Hydrogen Energ., 2012,37(11):8923-8928

    12. [12]

      [12] Hwang S, Lee J, Hong U G, et al. J. Ind. Eng. Chem., 2011,17(1):154-157

    13. [13]

      [13] Li J, Zhou L, Li P, et al. Chem. Eng. J., 2013,219(0):183- 189

    14. [14]

      [14] Hwang S, Lee J, Hong U G, et al. J. Ind. Eng. Chem., 2012,18(1):243-248

    15. [15]

      [15] Liu J, Shen W, Cui D, et al. Catal. Commun, 2013,38(0):35- 39

    16. [16]

      [16] Yu Y, Jin G, Wang Y, Guo X. Catal. Commun., 2013,31(0): 5-10

    17. [17]

      [17] Wang Y, Wu R, Zhao Y. Catal. Today, 2010,158(3/4): 470-474

    18. [18]

      [18] Tian D, Liu Z, Li D, et al. Fuel, 2013,104:224-229

    19. [19]

      [19] Liu H, Zou X, Wang X, et al. J. Nat. Gas Chem., 2012,21 (6):703-707

    20. [20]

      [20] Zhi G, Guo X, Wang Y, et al. Catal. Commun., 2011,16(1): 56-59

    21. [21]

      [21] Krmer M, Stwe K, Duisberg M, et al. Appl. Catal. A: Gen, 2009,369(1/2):42-52

    22. [22]

      [22] Hu D, Gao J, Ping Y, et al. Ind. Eng. Chem. Res., 2012,51 (13):4875-4886

    23. [23]

      [23] Xie Y, Tang Y. Adv. Catal., 1990,37:1-43

    24. [24]

      [24] Ocampo F, Louis B, Kiwi-Minsker L, et al. Appl. Catal. A: Gen., 2011,392(1/2):36-44

    25. [25]

      [25] Zhang J, Xu H, Jin X, et al. Appl. Catal. A: Gen., 2005,290 (1/2):87-96

    26. [26]

      [26] ZHANG Yu-Hong(张玉红), XIONG Guo-Xing(熊国兴), SHENG Shi-Shan(盛世善), et al. Acta Phys.-Chem. Sin. (物理化学学报), 1999,15(8):735-741

    27. [27]

      [27] REN Shi-Biao(任世彪), QIU Jin-Heng(邱金恒), WANG Chun-Yan(王春燕), et al. Chinese J. Inorg. Chem. (无机化学学报), 2007,23(6):1021-1028

    28. [28]

      [28] Iriondo A, Barrio V, Cambra J, et al. Top. Catal., 2008,49 (1):46-58

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    16. [16]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(350)
  • Abstract views(811)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return