Citation: CUI Yu-Min, HONG Wen-Shan, LI Hui-Quan, WU Xing-Cai, FAN Su-Hua, ZHU Liang-Jun. Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol[J]. Chinese Journal of Inorganic Chemistry, ;2014, (2): 431-441. doi: 10.11862/CJIC.2014.001 shu

Photocatalytic Degradation and Mechanism of BiOI/Bi2WO6 toward Methyl Orange and Phenol

  • Corresponding author: LI Hui-Quan, 
  • Received Date: 3 May 2013
    Available Online: 8 October 2013

    Fund Project:

  • BiOI/Bi2WO6 photocatalysts with various BiOIamounts were prepared by a simple deposition method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and low temperature nitrogen adsorption. The photocatalytic performance of BiOI/Bi2WO6 catalysts was evaluated using the photodegradation of methyl orange (MO) and phenol in an aqueous solution under UVand visible light irradiation. The results indicate that compared with commercial Degussa P25 and pure Bi2WO6, the 13.2% BiOI/Bi2WO6 photocatalyst shows much higher UVand visible light photocatalytic performance. The obviously increased photocatalytic activity could be mainly attributed to the effective transfer of the photogenerated electrons and holes at the interface of Bi2WO6 and BiOI, which reduces the recombination of electron-hole pairs. Atransfer process of photogenerated carriers is proposed based on the band structures of BiOIand Bi2WO6. Radical scavengers experiments demonstrate that ·OH, h+, ·O2-and H2O2, especially h+, together dominate the photodegradation process of MOand phenol.
  • 加载中
    1. [1]

      [1] Chen X B, Liu L, Yu P Y, et al. Science, 2011,331(6018): 746-750

    2. [2]

      [2] Mills A, Hazafy D. Chem. Commun., 2012,48(4):525-527

    3. [3]

      [3] Oncescu T, Stefan M I, Oancea P. Environ. Sci. Pollut. Res., 2010,17(5):1158-1166

    4. [4]

      [4] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(12):2597-2604

    5. [5]

      [5] Sério S, Jorge M E M, Coutinho M L, et al. Chem. Phys. Lett., 2011,508(1/2/3):71-75

    6. [6]

      [6] Nonoyama T, Kinoshita T, Higuchi M, et al. J. Am. Chem. Soc., 2012,134(21):8841-8847

    7. [7]

      [7] Chen S F, Zhang S J, Liu W, et al. J. Hazard. Mater., 2008, 155(1/2):320-326

    8. [8]

      [8] Li Y Z, Fan Y N, Chen Y. J. Mater. Chem., 2002,12(5): 1387-1390

    9. [9]

      [9] Carretero-Genevrier A, Boissiere C, Nicole L, et al. J. Am. Chem. Soc., 2012,134(26):10761-10764

    10. [10]

      [10] Obregón Alfaro S, Martínez-de la Cruz1 A. Appl. Catal. A: Gen., 2010,383(1/2):128-133

    11. [11]

      [11] Mann A K P, Skrabalak S E. Chem. Mater., 2011,23(4): 1017-1022

    12. [12]

      [12] Wu D X, Zhu H T, Zhang C Y, et al. Chem. Commun., 2010, 46(38):7250-7252

    13. [13]

      [13] Amano F, Nogami K, Tanaka M, et al. Langmuir, 2010,26 (10):7174-7180

    14. [14]

      [14] Huang Y, Ai Z, Ho W, et al. J. Phys. Chem. C, 2010,114 (14):6342-6349.

    15. [15]

      [15] Min Y L, Zhang K, Chen Y C, et al. Sep. Purif. Technol., 2012,92(5):115-120

    16. [16]

      [16] Xiao Q, Zhang J, Xiao C, et al. Catal. Commun., 2008,9 (6):1247-1253

    17. [17]

      [17] Zhang X, Zhang L Z, Xie T F, et al. J. Phys. Chem. C, 2009,113(17):7371-7378

    18. [18]

      [18] Chen L, Yin S F, Luo S L, et al. Ind. Eng. Chem. Res., 2012,51(19):6760-6768

    19. [19]

      [19] Li H Q, Cui Y M, Hong W S. Appl. Surf. Sci., 2013,264(1): 581-588

    20. [20]

      [20] Zhang Z J, Wang W Z, Wang L, et al. Appl. Mater. Interfaces, 2012,4(2):593-597

    21. [21]

      [21] Li G T, Wong K H, Zhang X W, et al. Chemosphere, 2009, 76(9):1185-1191

    22. [22]

      [22] Cao J, Xu B Y, Luo B D, et al. Catal. Commun., 2011,13(1): 63-68

    23. [23]

      [23] Galceran M, Pujol M C, Zaldo C, et al. J. Phys. Chem. C, 2009,113(35):15497-15506

    24. [24]

      [24] Zhang X, Ai Z H, Jia F L, et al. J. Phys. Chem. C, 2008, 112(3):747-753

    25. [25]

      [25] Song X C, Zheng Y F, Ma R, et al. J. Hazard. Mater., 2011,192(1):186-191

    26. [26]

      [26] Cao J, Xu B Y, Lin H L, et al. Chem. Eng. J., 2012,185/186 (6):91-97

    27. [27]

      [27] Zhang L, Wang W Z, Zhou L, et al. Appl. Catal. B: Environ., 2009,90(3/4):458-462

    28. [28]

      [28] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959

    29. [29]

      [29] Chen S F, Liu Y Z. Chemosphere, 2007,67(5):1010-1017

    30. [30]

      [30] Kangwansupamonkon W, Jitbunpot W, Kiatkamjornwong S. Polym. Degrad. Stabil., 2010,95(9):1894-1902

    31. [31]

      [31] Zhang H. Lü X J, Li Y M, et al. ACS Nano, 2008,2(7):1487- 1491

    32. [32]

      [32] Morales W, Cason M, Aina O, et al. J. Am. Ceram. Soc., 2008,130(20):6318-6319

    33. [33]

      [33] Hao R, Xiao X, Zuo X X, et al. J. Hazard. Mater., 2012, 209/210(5):137-145

    34. [34]

      [34] Zhang L S, Wong K H, Yip H Y, et al. Environ. Sci. Technol., 2010,44(4):1392-1398

    35. [35]

      [35] Yin M C, Li Z S, Kou J H, et al. Environ. Sci. Technol., 2009,43(21):8361-8366

    36. [36]

      [36] Zhang N, Liu S Q, Fu X Z, et al. J. Phys. Chem. C, 2011, 115(18):9136-9145

    37. [37]

      [37] Helali N, Bessekhouad Y, Bouguelia A, et al. J. Hazard. Mater., 2009,168(1):484-492

    38. [38]

      [38] Li X N, Huang R K, Hu Y H, et al. Inorg. Chem., 2012,51 (11):6245-6250

    39. [39]

      [39] Guan M L, Ma D K, Hu S W, et al. Inorg. Chem., 2011,50(3): 800-805

    40. [40]

      [40] Tang J W, Zou Z G, Ye J H. J. Phys. Chem. B, 2003,107 (51):14265-14269

    41. [41]

      [41] Yu J G, Yu H G, Cheng B, et al. J. Phys. Chem. B, 2003, 107(50):13871-13879

    42. [42]

      [42] Jing L Q, Qu Y C, Wang B Q, et al. Sol. Energy Mat. Sol. Cells., 2006,90(12):1773-1787

  • 加载中
    1. [1]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(924)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return