【物理化学学报】doi: 10.1016/j.actphy.2025.100144
光催化燃料电池光阳极活性材料的合理设计对开发高灵敏自供能电化学传感器至关重要。实现光阳极中电荷定向迁移和缩短传输路径是提升光催化燃料电池析氧反应性能的挑战。本文设计了一种具有N–W–O共价键的钨原子分散富碳石墨相氮化碳(W-CN-C)光阳极,用于构建对重金属铜离子检测的自供能光催化燃料电池传感器。通过自组装、剥离和热诱导相结合制备W-CN-C。N–W–O共价键作为界面电荷传输通道,促进电荷载流子分离与迁移。形成的富碳结构增加碳含量,进而增强W-CN-C的π-电子离域,从而显著拓宽太阳光响应范围。原子分散的钨提供活性位点,增强W-CN-C光阳极与电解质界面间的析氧反应动力学。这些协同效应显著提高可见光吸收能力和电荷分离与转移效率,增强W-CN-C光阳极的光电转换效率,表现出优异的析氧反应性能。基于Pt@C电催化剂阴极优异的氧还原反应性能,所构建的光催化燃料电池平台展现出增强的开路电位。在W-CN-C光阳极表面锚定对铜离子特异性识别的探针,构建了自供能光催化燃料电池传感平台,用于检测铜离子。铜离子与探针形成的复合物阻碍W-CN-C光阳极的电子传输,改变光催化燃料电池的输出检测信号。所构筑的传感器表现出跨越五个数量级的宽检测范围(2.0 × 10−2–9.2 × 102 nmol L−1)、低检测限(7.0 pmol L−1)、对常见干扰物的高选择性,以及对水生环境中重金属铜离子检测的可行性。此外,以万用表作为信号输出装置,传感平台实现对铜离子的自供能和便携式检测,检测范围为0.25–1.3 × 102 nmol L−1,检测限为84 pmol L−1。这项工作利用原子分散级金属引入的共价键作为电荷转移通道设计高性能光阳极,为构筑对环境检测的高灵敏自供能电化学传感器提供了思路。
