共价键调控电荷转移以实现自供能电化学传感平台对重金属离子的灵敏分析

陈芸 邓代洁 徐丽 朱兴旺 李赫楠 孙成明

引用本文: 陈芸, 邓代洁, 徐丽, 朱兴旺, 李赫楠, 孙成明. 共价键调控电荷转移以实现自供能电化学传感平台对重金属离子的灵敏分析[J]. 物理化学学报, 2026, 42(1): 100144. doi: 10.1016/j.actphy.2025.100144 shu
Citation:  Yun Chen,  Daijie Deng,  Li Xu,  Xingwang Zhu,  Henan Li,  Chengming Sun. Covalent bond modulation of charge transfer for sensitive heavy metal ion analysis in a self-powered electrochemical sensing platform[J]. Acta Physico-Chimica Sinica, 2026, 42(1): 100144. doi: 10.1016/j.actphy.2025.100144 shu

共价键调控电荷转移以实现自供能电化学传感平台对重金属离子的灵敏分析

    通讯作者: 朱兴旺,Emails:zxw@yzu.edu.cn; 李赫楠,Emails:lhn@ujs.edu.cn
  • 基金项目:

    国家自然科学基金(22178148, 22278193)资助项目

摘要: 光催化燃料电池光阳极活性材料的合理设计对开发高灵敏自供能电化学传感器至关重要。实现光阳极中电荷定向迁移和缩短传输路径是提升光催化燃料电池析氧反应性能的挑战。本文设计了一种具有N–W–O共价键的钨原子分散富碳石墨相氮化碳(W-CN-C)光阳极,用于构建对重金属铜离子检测的自供能光催化燃料电池传感器。通过自组装、剥离和热诱导相结合制备W-CN-C。N–W–O共价键作为界面电荷传输通道,促进电荷载流子分离与迁移。形成的富碳结构增加碳含量,进而增强W-CN-C的p-电子离域,从而显著拓宽太阳光响应范围。原子分散的钨提供活性位点,增强W-CN-C光阳极与电解质界面间的析氧反应动力学。这些协同效应显著提高可见光吸收能力和电荷分离与转移效率,增强W-CN-C光阳极的光电转换效率,表现出优异的析氧反应性能。基于Pt@C电催化剂阴极优异的氧还原反应性能,所构建的光催化燃料电池平台展现出增强的开路电位。在W-CN-C光阳极表面锚定对铜离子特异性识别的探针,构建了自供能光催化燃料电池传感平台,用于检测铜离子。铜离子与探针形成的复合物阻碍W-CN-C光阳极的电子传输,改变光催化燃料电池的输出检测信号。所构筑的传感器表现出跨越五个数量级的宽检测范围(2.0 x 10−2–9.2 x 102 nmol L−1)、低检测限(7.0 pmol L−1)、对常见干扰物的高选择性,以及对水生环境中重金属铜离子检测的可行性。此外,以万用表作为信号输出装置,传感平台实现对铜离子的自供能和便携式检测,检测范围为0.25–1.3 x 102 nmol L−1,检测限为84 pmol L−1。这项工作利用原子分散级金属引入的共价键作为电荷转移通道设计高性能光阳极,为构筑对环境检测的高灵敏自供能电化学传感器提供了思路。

English

    1. [1]

      Y. He, K. Chen, M.K.H. Leung, Y. Zhang, L. Li, G. Li, J. Xuan, J. Li, Chem. Eng. J. 428(2022) 131074, https://doi.org/10.1016/j.cej.2021.131074.Y. He, K. Chen, M.K.H. Leung, Y. Zhang, L. Li, G. Li, J. Xuan, J. Li, Chem. Eng. J. 428(2022) 131074, https://doi.org/10.1016/j.cej.2021.131074.

    2. [2]

      M.H. Li, Y.B. Liu, L.M. Dong, C.S. Shen, F. Li, M.H. Huang, C.Y. Ma, B. Yang, X.Q. An, W. Sand, Sci. Total Environ. 668(2019) 966, https://doi.org/10.1016/j.scitotenv.2019.03.071.M.H. Li, Y.B. Liu, L.M. Dong, C.S. Shen, F. Li, M.H. Huang, C.Y. Ma, B. Yang, X.Q. An, W. Sand, Sci. Total Environ. 668(2019) 966, https://doi.org/10.1016/j.scitotenv.2019.03.071.

    3. [3]

      Y. Chen, Y.F. Jia, X.W. Zhu, L. Xu, H.N. Li, H.M. Li, ACS Sens. 9(2024) 2429, https://doi.org/10.1021/acssensors.4c00108.Y. Chen, Y.F. Jia, X.W. Zhu, L. Xu, H.N. Li, H.M. Li, ACS Sens. 9(2024) 2429, https://doi.org/10.1021/acssensors.4c00108.

    4. [4]

      P.L. Yang, X.L. Hou, X. Gao, Y.X. Peng, Q.F. Li, Q.J. Niu, Q. Liu, ACS Sens. 9(2024) 577, https://doi.org/10.1021/acssensors.3c02198.P.L. Yang, X.L. Hou, X. Gao, Y.X. Peng, Q.F. Li, Q.J. Niu, Q. Liu, ACS Sens. 9(2024) 577, https://doi.org/10.1021/acssensors.3c02198.

    5. [5]

      X.J. Du, W.H. Du, J. Sun, D. Jiang, Food Chem. 385(2022) 132731, https://doi.org/10.1016/j.foodchem.2022.132731.X.J. Du, W.H. Du, J. Sun, D. Jiang, Food Chem. 385(2022) 132731, https://doi.org/10.1016/j.foodchem.2022.132731.

    6. [6]

      R.S. Shen, L. Zhang, N. Li, Z.Z. Lou, T.Y. Ma, P. Zhang, Y.J. Li, X. Li, ACS Catal. 12(2022) 9994, https://doi.org/10.1021/acscatal.2c02416.R.S. Shen, L. Zhang, N. Li, Z.Z. Lou, T.Y. Ma, P. Zhang, Y.J. Li, X. Li, ACS Catal. 12(2022) 9994, https://doi.org/10.1021/acscatal.2c02416.

    7. [7]

      X. Wang, Y. Wang, M. Ma, X.W. Zhao, J.Y. Zhang, F.X. Zhang, Small 20(2024) 2311841, https://doi.org/10.1002/smll.202311841.X. Wang, Y. Wang, M. Ma, X.W. Zhao, J.Y. Zhang, F.X. Zhang, Small 20(2024) 2311841, https://doi.org/10.1002/smll.202311841.

    8. [8]

      T. Yang, Z.W. Chen, X.Z. Yue, Q.C. Liu, S.S. Yi, Y.F. Zhu, Adv. Funct. Mater. 34(2024) 2313767, https://doi.org/10.1002/adfm.202313767.T. Yang, Z.W. Chen, X.Z. Yue, Q.C. Liu, S.S. Yi, Y.F. Zhu, Adv. Funct. Mater. 34(2024) 2313767, https://doi.org/10.1002/adfm.202313767.

    9. [9]

      B. Li, Z. Tian, L. Li, Y.H. Wang, Y. Si, H. Wan, J. Shi, G.F. Huang, W. Hu, A. Pan, W.Q. Huang, ACS Nano 17(2023) 3465, https://doi.org/10.1021/acsnano.2c09659B. Li, Z. Tian, L. Li, Y.H. Wang, Y. Si, H. Wan, J. Shi, G.F. Huang, W. Hu, A. Pan, W.Q. Huang, ACS Nano 17(2023) 3465, https://doi.org/10.1021/acsnano.2c09659

    10. [10]

      X.W. Zhu, Z.L.Wang, K. Zhong, Q.D. Li, P.H. Ding, Z.Y. Feng, J.M. Yang, Y.S. Du, Y.H. Song, Y.J. Hua, J.J. Yuan, Y.X. She, H.M. Li, H. Xu, Chem. Eng. J. 429(2022) 132204, https://doi.org/10.1016/j.cej.2021.132204.X.W. Zhu, Z.L.Wang, K. Zhong, Q.D. Li, P.H. Ding, Z.Y. Feng, J.M. Yang, Y.S. Du, Y.H. Song, Y.J. Hua, J.J. Yuan, Y.X. She, H.M. Li, H. Xu, Chem. Eng. J. 429(2022) 132204, https://doi.org/10.1016/j.cej.2021.132204.

    11. [11]

      M.Y. Wang, Z.Z. Zhang, Z.X. Chi, L.L. Lou, H. Li, H. Yu, T.Y. Ma, K. Yu, H. Wang, Adv. Funct. Mater. 33(2022) 2211565, https://doi.org/10.1002/adfm.202211565.M.Y. Wang, Z.Z. Zhang, Z.X. Chi, L.L. Lou, H. Li, H. Yu, T.Y. Ma, K. Yu, H. Wang, Adv. Funct. Mater. 33(2022) 2211565, https://doi.org/10.1002/adfm.202211565.

    12. [12]

      J.T. Dong, S.N. Ji, Y. Zhang, M.X. Ji, B. Wang, Y.J. Li, Z.G. Chen, J.X. Xia, H.M. Li, Acta Phys. -Chim. Sin. 39(2023) 2212011, https://doi.org/10.3866/PKU.WHXB202212011.J.T. Dong, S.N. Ji, Y. Zhang, M.X. Ji, B. Wang, Y.J. Li, Z.G. Chen, J.X. Xia, H.M. Li, Acta Phys. -Chim. Sin. 39(2023) 2212011, https://doi.org/10.3866/PKU.WHXB202212011.

    13. [13]

      G.P. Liu, L. Wang, X. Chen, X.W. Zhu, B. Wang, X.Y. Xu, Z.R. Chen, W.S. Zhu, H.M. Li, J.X. Xia, Green Chem. Eng. 3(2022) 157, https://doi.org/10.1016/j.gce.2021.11.007.G.P. Liu, L. Wang, X. Chen, X.W. Zhu, B. Wang, X.Y. Xu, Z.R. Chen, W.S. Zhu, H.M. Li, J.X. Xia, Green Chem. Eng. 3(2022) 157, https://doi.org/10.1016/j.gce.2021.11.007.

    14. [14]

      G.P. Liu, L. Wang, B. Wang, X.W. Zhu, J.M. Yang, P.J. Liu, W.S. Zhu, Z.R. Chen, J.X. Xia, Chinese Chem. Lett. 34(2023) 107962, https://doi.org/10.1016/j.cclet.2022.107962.G.P. Liu, L. Wang, B. Wang, X.W. Zhu, J.M. Yang, P.J. Liu, W.S. Zhu, Z.R. Chen, J.X. Xia, Chinese Chem. Lett. 34(2023) 107962, https://doi.org/10.1016/j.cclet.2022.107962.

    15. [15]

      J.T. Dong, Y. Zhang, L. Liu, X.M. Zhang, L.N. Li, G.P. Liu, H.M. Li, P.C. Yan, J.X. Xia, Chem. Commun. 61(2025) 7125, https://doi.org/10.1039/D4CC06531J.J.T. Dong, Y. Zhang, L. Liu, X.M. Zhang, L.N. Li, G.P. Liu, H.M. Li, P.C. Yan, J.X. Xia, Chem. Commun. 61(2025) 7125, https://doi.org/10.1039/D4CC06531J.

    16. [16]

      Y.H. Li, Y.F. Wang, J.Y. Li, M.Y. Qi, M. Conte, Z.R. Tang, Y.J. Xu, ACS Catal. 14(2023) 657, https://doi.org/10.1021/acscatal.3c05511.Y.H. Li, Y.F. Wang, J.Y. Li, M.Y. Qi, M. Conte, Z.R. Tang, Y.J. Xu, ACS Catal. 14(2023) 657, https://doi.org/10.1021/acscatal.3c05511.

    17. [17]

      X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(2009) 76, https://doi.org/10.1038/NMAT2317.X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8(2009) 76, https://doi.org/10.1038/NMAT2317.

    18. [18]

      Y. Chen, Y.H. Ge, Y.T. Yan, L. Xu, X.W. Zhu, P.C. Yan, P.H. Ding, H.M. Li, H.N. Li, Adv. Sci. 11(2024) 2408293, https://doi.org/10.1002/advs.202408293.Y. Chen, Y.H. Ge, Y.T. Yan, L. Xu, X.W. Zhu, P.C. Yan, P.H. Ding, H.M. Li, H.N. Li, Adv. Sci. 11(2024) 2408293, https://doi.org/10.1002/advs.202408293.

    19. [19]

      Y. Dai, W.G. Peng, Y. Ji, J. Wei, J.H. Che, Y.Q. Huang, W.H. Huang, W.M. Yang, W.Z. Xu, J. Food Sci. 89(2024) 8022, https://doi.org/10.1111/1750-3841.17398.Y. Dai, W.G. Peng, Y. Ji, J. Wei, J.H. Che, Y.Q. Huang, W.H. Huang, W.M. Yang, W.Z. Xu, J. Food Sci. 89(2024) 8022, https://doi.org/10.1111/1750-3841.17398.

    20. [20]

      Q.J. Yue Wang, J.K. Shang, J. Xu,Y.X. Li, Acta Phys. -Chim. Sin. 32(2016) 1913, https://doi.org/10.3866/PKU.WHXB201605052.Q.J. Yue Wang, J.K. Shang, J. Xu,Y.X. Li, Acta Phys. -Chim. Sin. 32(2016) 1913, https://doi.org/10.3866/PKU.WHXB201605052.

    21. [21]

      J.S. Zhang, X.F. Chen , K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X.Z. Fu, M. Antonietti, X.C. Wang,  Angew. Chem. 49(2010) 441, https://doi.org/10.1002/ange.200903886.J.S. Zhang, X.F. Chen , K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X.Z. Fu, M. Antonietti, X.C. Wang,  Angew. Chem. 49(2010) 441, https://doi.org/10.1002/ange.200903886.

    22. [22]

      D. Cao, Z.R. Zhang, Y.H. Cui, R.H. Zhang, L.P. Zhang, J. Zeng, D.J. Cheng, Angew. Chem. Int. Ed. 62(2023) e202214259, https://doi.org/10.1002/anie.202214259.D. Cao, Z.R. Zhang, Y.H. Cui, R.H. Zhang, L.P. Zhang, J. Zeng, D.J. Cheng, Angew. Chem. Int. Ed. 62(2023) e202214259, https://doi.org/10.1002/anie.202214259.

    23. [23]

      J. Deng, Y.X. Zeng, E. Almatrafi, Y.T. Liang, Z.H. Wang, Z.H. Wang, B. Song, Y.N. Shang, W.J. Wang, C.Y. Zhou, G.M. Zeng, Coordin. Chem. Rev. 505(2024) 215693, https://doi.org/10.1016/j.ccr.2024.215693.J. Deng, Y.X. Zeng, E. Almatrafi, Y.T. Liang, Z.H. Wang, Z.H. Wang, B. Song, Y.N. Shang, W.J. Wang, C.Y. Zhou, G.M. Zeng, Coordin. Chem. Rev. 505(2024) 215693, https://doi.org/10.1016/j.ccr.2024.215693.

    24. [24]

      X.T. Feng, Z.A. Shang, R. Qin, Y.H. Han, Acta Phys. -Chim. Sin. 40(2024) 2305005, https://doi.org/10.3866/PKU.WHXB202305005.X.T. Feng, Z.A. Shang, R. Qin, Y.H. Han, Acta Phys. -Chim. Sin. 40(2024) 2305005, https://doi.org/10.3866/PKU.WHXB202305005.

    25. [25]

      D.M. Zhao, Y.Q. Wang, C.L. Dong, F.Q. Meng, Y.C. Huang, Q.H. Zhang, L. Gu, L. Liu, S.H. Shen, Nano-Micro Lett. 14(2022) 223, https://doi.org/10.1007/s40820-022-00962-x.D.M. Zhao, Y.Q. Wang, C.L. Dong, F.Q. Meng, Y.C. Huang, Q.H. Zhang, L. Gu, L. Liu, S.H. Shen, Nano-Micro Lett. 14(2022) 223, https://doi.org/10.1007/s40820-022-00962-x.

    26. [26]

      Q. Hong, H. Yang, Y.F. Fang, W. Li, C.X. Zhu, Z. Wang, S.C. Liang, X.W. Cao, Z.X. Zhou, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Nat. Commun. 14(2023) 2780, https://doi.org/10.1038/s41467-023-38459-9.Q. Hong, H. Yang, Y.F. Fang, W. Li, C.X. Zhu, Z. Wang, S.C. Liang, X.W. Cao, Z.X. Zhou, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Nat. Commun. 14(2023) 2780, https://doi.org/10.1038/s41467-023-38459-9.

    27. [27]

      X.D. Xiao, Y.T. Gao, L.P. Zhang, J.C. Zhang, Q. Zhang, Q. Li, H.L. Bao, J. Zhou, S. Miao, N. Chen, J.Q. Wang, B.J. Jiang, C.G. Tian, H.G. Fu, Adv. Mater. 32(2020) 2003082, https://doi.org/10.1002/adma.202003082.X.D. Xiao, Y.T. Gao, L.P. Zhang, J.C. Zhang, Q. Zhang, Q. Li, H.L. Bao, J. Zhou, S. Miao, N. Chen, J.Q. Wang, B.J. Jiang, C.G. Tian, H.G. Fu, Adv. Mater. 32(2020) 2003082, https://doi.org/10.1002/adma.202003082.

    28. [28]

      X.D. Xiao, L.P. Zhang, H.Y. Meng, B.J. Jiang, H.G. Fu, Solar RRL 5(2021) 2000609, https://doi.org/10.1002/solr.202000609.X.D. Xiao, L.P. Zhang, H.Y. Meng, B.J. Jiang, H.G. Fu, Solar RRL 5(2021) 2000609, https://doi.org/10.1002/solr.202000609.

    29. [29]

      Z.M. Zhai, H.H. Zhang, F.S. Niu, P.Y. Liu, J.J. Zhang, H.B. Lu, ACS Nano 16(2022) 21002, https://doi.org/10.1021/acsnano.2c08643.Z.M. Zhai, H.H. Zhang, F.S. Niu, P.Y. Liu, J.J. Zhang, H.B. Lu, ACS Nano 16(2022) 21002, https://doi.org/10.1021/acsnano.2c08643.

    30. [30]

      Q. Li, L.M. Zhang, J.N. Liu, J. Zhou, Y.Q. Jiao, X.D. Xiao, C. Zhao, Y. Zhou, S. Ye, B.J. Jiang, J. Liu, Small 17(2021) e2006622, https://doi.org/10.1002/smll.202006622.Q. Li, L.M. Zhang, J.N. Liu, J. Zhou, Y.Q. Jiao, X.D. Xiao, C. Zhao, Y. Zhou, S. Ye, B.J. Jiang, J. Liu, Small 17(2021) e2006622, https://doi.org/10.1002/smll.202006622.

    31. [31]

      X.Y. Zhang, Y.Q. Liu, M. Ren, G. Yang, L. Qin, Y.H. Guo, J.Q. Meng, Chem. Eng. J. 433(2022) 134551, https://doi.org/10.1016/j.cej.2022.134551.X.Y. Zhang, Y.Q. Liu, M. Ren, G. Yang, L. Qin, Y.H. Guo, J.Q. Meng, Chem. Eng. J. 433(2022) 134551, https://doi.org/10.1016/j.cej.2022.134551.

    32. [32]

      Y. Chen, D.J. Deng, P.C. Yan, Y.F. Jia, L. Xu, J.C. Qian, H.M. Li, H.N. Li, Sens. Actuators B Chem. 395(2023) 134501, https://doi.org/10.1016/j.snb.2023.134501.Y. Chen, D.J. Deng, P.C. Yan, Y.F. Jia, L. Xu, J.C. Qian, H.M. Li, H.N. Li, Sens. Actuators B Chem. 395(2023) 134501, https://doi.org/10.1016/j.snb.2023.134501.

    33. [33]

      S.R. Ke, X. Min, Y.G. Liu, R.Y. Mi, X.W. Wu, Z.H. Huang, M.H. Fang, Molecules 27(2022) 4751, https://doi.org/10.3390/molecules27154751.S.R. Ke, X. Min, Y.G. Liu, R.Y. Mi, X.W. Wu, Z.H. Huang, M.H. Fang, Molecules 27(2022) 4751, https://doi.org/10.3390/molecules27154751.

    34. [34]

      D.J. Deng, W. Zhang, J.C. Qian, Y. Chen, C. Pu, H.M. Li, H.N. Li, L. Xu, Nano Energy 134(2025) 110579, https://doi.org/10.1016/j.nanoen.2024.110579.D.J. Deng, W. Zhang, J.C. Qian, Y. Chen, C. Pu, H.M. Li, H.N. Li, L. Xu, Nano Energy 134(2025) 110579, https://doi.org/10.1016/j.nanoen.2024.110579.

    35. [35]

      Y.X. Xia, Y. Zhao, F.X. Ai, Y.H. Yi, T.T. Liu, H.Y. Lin, G.B. Zhu, J. Hazard. Mater. 425(2022) 127974, https://doi.org/10.1016/j.jhazmat.2021.127974.Y.X. Xia, Y. Zhao, F.X. Ai, Y.H. Yi, T.T. Liu, H.Y. Lin, G.B. Zhu, J. Hazard. Mater. 425(2022) 127974, https://doi.org/10.1016/j.jhazmat.2021.127974.

    36. [36]

      N. Bagheri, V. Mazzaracchio, S. Cinti, N. Colozza, C. Di Natale, P.A. Netti, M. Saraji, S. Roggero, D. Moscone, F. Arduini, Anal. Chem. 93(2021) 5225, https://doi.org/10.1021/acs.analchem.0c05469.N. Bagheri, V. Mazzaracchio, S. Cinti, N. Colozza, C. Di Natale, P.A. Netti, M. Saraji, S. Roggero, D. Moscone, F. Arduini, Anal. Chem. 93(2021) 5225, https://doi.org/10.1021/acs.analchem.0c05469.

    37. [37]

      P.C. Yan, J. Huang, G.Y. Wu, Y. Zhang, Z. Mo, K.Q. Xu, M. Ling, S.H. Dong, L. Xu, H.N. Li, J. Colloid Interface Sci. 679(2025) 653, https://doi.org/10.1016/j.jcis.2024.10.016.P.C. Yan, J. Huang, G.Y. Wu, Y. Zhang, Z. Mo, K.Q. Xu, M. Ling, S.H. Dong, L. Xu, H.N. Li, J. Colloid Interface Sci. 679(2025) 653, https://doi.org/10.1016/j.jcis.2024.10.016.

    38. [38]

      Y.T. Xiao, G.H. Tian, W. Li, Y. Xie, B.J. Jiang, C.G. Tian, D.Y. Zhao, H.G. Fu, J. Am. Chem. Soc. 141(2019) 2508, https://doi.org/10.1021/jacs.8b12428.Y.T. Xiao, G.H. Tian, W. Li, Y. Xie, B.J. Jiang, C.G. Tian, D.Y. Zhao, H.G. Fu, J. Am. Chem. Soc. 141(2019) 2508, https://doi.org/10.1021/jacs.8b12428.

    39. [39]

      Y. Wang, J.W. Zhang, W.X. Shi, G.L. Zhuang, Q.P. Zhao, J. Ren, P. Zhang, H.Q. Yin, T.B. Lu, Z.M. Zhang, Adv. Mater. 34(2022) e2204448, https://doi.org/10.1002/adma.202204448.Y. Wang, J.W. Zhang, W.X. Shi, G.L. Zhuang, Q.P. Zhao, J. Ren, P. Zhang, H.Q. Yin, T.B. Lu, Z.M. Zhang, Adv. Mater. 34(2022) e2204448, https://doi.org/10.1002/adma.202204448.

    40. [40]

      Z. Chen, J.X. Zhao, C.R. Cabrera, Z.F. Chen, Small Methods 3(2019) 1800368, https://doi.org/10.1002/smtd.201800368.Z. Chen, J.X. Zhao, C.R. Cabrera, Z.F. Chen, Small Methods 3(2019) 1800368, https://doi.org/10.1002/smtd.201800368.

    41. [41]

      S.L. Chu, M.H. Yu, Y. Pan, S.X. Hu, B.Q. Liu, T. Lu, F.Y. Zeng, S.L. Luo, Small 19(2023) 2300619, https://doi.org/10.1002/smll.202300619.S.L. Chu, M.H. Yu, Y. Pan, S.X. Hu, B.Q. Liu, T. Lu, F.Y. Zeng, S.L. Luo, Small 19(2023) 2300619, https://doi.org/10.1002/smll.202300619.

    42. [42]

      Y. Gu, T.F. Xu, X.F. Chen, W.X. Chen, W.Y. Lu, Chem. Eng. J. 427(2022) 131973, https://doi.org/10.1016/j.cej.2021.131973.Y. Gu, T.F. Xu, X.F. Chen, W.X. Chen, W.Y. Lu, Chem. Eng. J. 427(2022) 131973, https://doi.org/10.1016/j.cej.2021.131973.

    43. [43]

      K.X. Li, L.S. Yan, Z.X. Zeng, S.L. Luo, X.B. Luo, X.M. Liu, H.Q. Guo, Y.H. Guo, Appl. Catal. B Environ. 156-157(2014) 141, https://doi.org/10.1016/j.apcatb.2014.03.010.K.X. Li, L.S. Yan, Z.X. Zeng, S.L. Luo, X.B. Luo, X.M. Liu, H.Q. Guo, Y.H. Guo, Appl. Catal. B Environ. 156-157(2014) 141, https://doi.org/10.1016/j.apcatb.2014.03.010.

    44. [44]

      J. Ding, L. Wang, Q.Q. Liu, Y.Y. Chai, X. Liu, W.L. Dai, Appl. Catal. B Environ. 176-177(2015) 91, https://doi.org/10.1016/j.apcatb.2015.03.028.J. Ding, L. Wang, Q.Q. Liu, Y.Y. Chai, X. Liu, W.L. Dai, Appl. Catal. B Environ. 176-177(2015) 91, https://doi.org/10.1016/j.apcatb.2015.03.028.

    45. [45]

      Y.J. Liang, X. Wu, X.Y. Liu, C.H. Li, S.W. Liu, Appl. Catal. B Environ. 304(2022) 120978, https://doi.org/10.1016/j.apcatb.2021.120978.Y.J. Liang, X. Wu, X.Y. Liu, C.H. Li, S.W. Liu, Appl. Catal. B Environ. 304(2022) 120978, https://doi.org/10.1016/j.apcatb.2021.120978.

    46. [46]

      F. Zhang, J.H. Zhang, H.F. Wang, J.M. Li, H.H. Liu, X. Jin, X.Q. Wang, G.Q. Zhang, Chem. Eng. J. 424(2021) 130004, https://doi.org/10.1016/j.cej.2021.130004.F. Zhang, J.H. Zhang, H.F. Wang, J.M. Li, H.H. Liu, X. Jin, X.Q. Wang, G.Q. Zhang, Chem. Eng. J. 424(2021) 130004, https://doi.org/10.1016/j.cej.2021.130004.

    47. [47]

      J.T. Dong, J.Z. Zhao, X.W. Yan, L.N. Li, G.P. Liu, M.X. Ji, B. Wang, Y.B. She, H.M. Li, J.X. Xia, Appl. Catal. B Environ. 351(2024) 123993, https://doi.org/10.1016/j.apcatb.2024.123993J.T. Dong, J.Z. Zhao, X.W. Yan, L.N. Li, G.P. Liu, M.X. Ji, B. Wang, Y.B. She, H.M. Li, J.X. Xia, Appl. Catal. B Environ. 351(2024) 123993, https://doi.org/10.1016/j.apcatb.2024.123993

    48. [48]

      Y. Li, Y.J. Chen, Q. Wang, Y.Y. Ye, J.S. Zeng, Z. Liu, Adv. Mater. 37(2025) 2414994, https://doi.org/10.1002/adma.202414994.Y. Li, Y.J. Chen, Q. Wang, Y.Y. Ye, J.S. Zeng, Z. Liu, Adv. Mater. 37(2025) 2414994, https://doi.org/10.1002/adma.202414994.

    49. [49]

      Y.L. Chen, M.F. Yu, G.C. Huang, Q.S. Chen, J.H. Bi, Small 18(2022) e2205388, https://doi.org/10.1002/smll.202205388.Y.L. Chen, M.F. Yu, G.C. Huang, Q.S. Chen, J.H. Bi, Small 18(2022) e2205388, https://doi.org/10.1002/smll.202205388.

    50. [50]

      S.C. Sun, G.Q. Shen, J.W. Jiang, W.B. Mi, X.L. Liu, L. Pan, X.W. Zhang, J.J. Zou, Adv. Energy Mater. 9(2019) 1901505,. https://doi.org/10.1002/aenm.201901505.S.C. Sun, G.Q. Shen, J.W. Jiang, W.B. Mi, X.L. Liu, L. Pan, X.W. Zhang, J.J. Zou, Adv. Energy Mater. 9(2019) 1901505,. https://doi.org/10.1002/aenm.201901505.

    51. [51]

      S.C. Song, N. Li, L.P. Bai, P.P. Gai, F. Li, Anal. Chem. 94(2022) 1654, https://doi.org/10.1021/acs.analchem.1c04135.S.C. Song, N. Li, L.P. Bai, P.P. Gai, F. Li, Anal. Chem. 94(2022) 1654, https://doi.org/10.1021/acs.analchem.1c04135.

    52. [52]

      Y. Huang, J. Zheng, L. Wang, X.G. Duan, Y.S. Wang, Y. Xiang, G.X. Li, Biosens. Bioelectron. 127(2019) 45, https://doi.org/10.1016/j.bios.2018.12.016.Y. Huang, J. Zheng, L. Wang, X.G. Duan, Y.S. Wang, Y. Xiang, G.X. Li, Biosens. Bioelectron. 127(2019) 45, https://doi.org/10.1016/j.bios.2018.12.016.

    53. [53]

      Y. Chen, L. Xu, M.Y. Yang, Y.F. Jia, Y.T. Yan, J.C. Qian, F. Chen, H.N. Li, Sens. Actuators B Chem. 353(2022) 131187, https://doi.org/10.1016/j.snb.2021.131187.Y. Chen, L. Xu, M.Y. Yang, Y.F. Jia, Y.T. Yan, J.C. Qian, F. Chen, H.N. Li, Sens. Actuators B Chem. 353(2022) 131187, https://doi.org/10.1016/j.snb.2021.131187.

    54. [54]

      J. Wei, Q.Q. Hu, Y. Gao, N. Hao, J. Qian, K. Wang, Anal. Chem. 93(2021) 12690, https://doi.org/10.1021/acs.analchem.1c02555.J. Wei, Q.Q. Hu, Y. Gao, N. Hao, J. Qian, K. Wang, Anal. Chem. 93(2021) 12690, https://doi.org/10.1021/acs.analchem.1c02555.

    55. [55]

      Y.X. Jin, Y. Luan, Z. Wu, W. Wen, X.H. Zhang, S.F. Wang, Anal. Chem. 93(2021) 13204, https://doi.org/10.1021/acs.analchem.1c02074.Y.X. Jin, Y. Luan, Z. Wu, W. Wen, X.H. Zhang, S.F. Wang, Anal. Chem. 93(2021) 13204, https://doi.org/10.1021/acs.analchem.1c02074.

    56. [56]

      X.L. Ouyang, L. Tang, C.Y. Feng, B. Peng, Y.N. Liu, X.Y. Ren, X. Zhu, J.S. Tan, X.X. Hu, Biosens. Bioelectron. 164(2020) 112328, https://doi.org/10.1016/j.bios.2020.112328.X.L. Ouyang, L. Tang, C.Y. Feng, B. Peng, Y.N. Liu, X.Y. Ren, X. Zhu, J.S. Tan, X.X. Hu, Biosens. Bioelectron. 164(2020) 112328, https://doi.org/10.1016/j.bios.2020.112328.

    57. [57]

      L.M. Zhang, D. Li, S.H. Li, J.P. Li, X.H. Ma, M.Y. Wang, Microchem. J. 185(2023) 108285, https://doi.org/10.1016/j.microc.2022.108285.L.M. Zhang, D. Li, S.H. Li, J.P. Li, X.H. Ma, M.Y. Wang, Microchem. J. 185(2023) 108285, https://doi.org/10.1016/j.microc.2022.108285.

    58. [58]

      Z.Y. Xu, Q.Y. Meng, Q. Cao, Y.S. Xiao, H. Liu, G. Han, S.H. Wei, J. Yan, L.D. Wu, Anal. Chem. 92(2020) 2201, https://doi.org/10.1021/acs.analchem.9b04900.Z.Y. Xu, Q.Y. Meng, Q. Cao, Y.S. Xiao, H. Liu, G. Han, S.H. Wei, J. Yan, L.D. Wu, Anal. Chem. 92(2020) 2201, https://doi.org/10.1021/acs.analchem.9b04900.

    59. [59]

      A. Nourbakhsh, M. Rahimnejad, M. Asghary, H. Younesi, Microchem. J. 175(2022) 107137, https://doi.org/10.1016/j.microc.2021.107137.A. Nourbakhsh, M. Rahimnejad, M. Asghary, H. Younesi, Microchem. J. 175(2022) 107137, https://doi.org/10.1016/j.microc.2021.107137.

    60. [60]

      M.X. Lu, Y.J. Deng, Y. Luo, J.P. Lv, T.B. Li, J. Xu, S.W. Chen, J.Y. Wang, Anal. Chem. 91(2019) 888, https://doi.org/10.1021/acs.analchem.8b03764.M.X. Lu, Y.J. Deng, Y. Luo, J.P. Lv, T.B. Li, J. Xu, S.W. Chen, J.Y. Wang, Anal. Chem. 91(2019) 888, https://doi.org/10.1021/acs.analchem.8b03764.

    61. [61]

      C.C. Zhai, L.Y. Miao, Y.B. Zhang, L.Q. Zhang, H. Li, S.X. Zhang, Chem. Eng. J. 431(2022) 134107, https://doi.org/10.1016/j.cej.2021.134107.C.C. Zhai, L.Y. Miao, Y.B. Zhang, L.Q. Zhang, H. Li, S.X. Zhang, Chem. Eng. J. 431(2022) 134107, https://doi.org/10.1016/j.cej.2021.134107.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  25
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2025-07-31
  • 收稿日期:  2025-04-29
  • 修回日期:  2025-06-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章