【物理化学学报】doi: 10.1016/j.actphy.2025.100083
尿素氧化反应(UOR)是一种很有前途的可再生能源生产技术,为电解水制氢提供了有效的替代方案,因此开发高效稳定的UOR催化剂至关重要。本文通过NaBH4还原和硒化策略合成了富含Co、Mn和Mo的硒化镍催化剂(NiCoMnMo-Se),该催化剂具有球形纳米颗粒与纳米片共存结构。X射线光电子能谱(XPS)、紫外-可见分光光度法(UV-vis)和原位bode相图表明,Mn和Mo的协同效应调节了Ni/Co的电子结构,提高了硒化物的电导率并加速加速电荷转移动力学,从而促进Ni2+/Co2+快速转变为活性Ni3+/Co3+,并显著降低了NiCoMnMo-Se的起始电位。在UOR过程中,大部分Mo和Se被氧化成钼酸盐和硒酸盐溶解在电解质中,暴露出更多的Ni(Co)OOH活性位点,从而加快UOR反应。另外,Mn的引入稳固了活性位点,极大地增强催化剂的整体稳定性。正如预期的那样,NiCoMnMo-Se催化剂在UOR过程中表现出优异的电催化和稳定性性能,在仅1.38 V vs. RHE (相对于可逆氢电极)的电位下实现了50 mA·cm−2的电流密度,并在50 mA·cm−2电流密度下运行50 h后电压仅上升3.0%。当NiCoMnMo-Se和商业Pt/C组装成用于碱性尿素电解的双电极体系时,它只需要1.59 V vs. RHE便达到50 mA·cm−2。
【无机化学学报】doi: 10.11862/CJIC.20250029
The poor electrical conductivity of metal-organic frameworks (MOFs) limits their electrocatalytic performance in the oxygen evolution reaction (OER). In this study, a Py@Co-MOF composite material based on pyrene (Py) molecules and {[Co2(BINDI)(DMA)2]·DMA}n (Co-MOF, H4BINDI=N,N′-bis(5-isophthalic acid)naphthalenediimide, DMA=N,N-dimethylacetamide) was synthesized via a one-pot method, leveraging π-π interactions between pyrene and Co-MOF to modulate electrical conductivity. Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes, achieving an overpotential of 246 mV at a current density of 10 mA·cm-2 along with excellent stability. Density functional theory (DFT) calculations reveal that the formation of O* in the second step is the rate-determining step (RDS) during the OER process on Co-MOF, with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH* intermediate for Co sites.
