Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能

雷明杰 胡文婷 林可心 孙秀娟 张澔珅 钱烨 康彤玥 吴秀琳 廖海龙 潘园 张玉微 魏笛野 高平

引用本文: 雷明杰, 胡文婷, 林可心, 孙秀娟, 张澔珅, 钱烨, 康彤玥, 吴秀琳, 廖海龙, 潘园, 张玉微, 魏笛野, 高平. Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能[J]. 物理化学学报, 2025, 41(8): 100083. doi: 10.1016/j.actphy.2025.100083 shu
Citation:  Mingjie Lei, Wenting Hu, Kexin Lin, Xiujuan Sun, Haoshen Zhang, Ye Qian, Tongyue Kang, Xiulin Wu, Hailong Liao, Yuan Pan, Yuwei Zhang, Diye Wei, Ping Gao. Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis[J]. Acta Physico-Chimica Sinica, 2025, 41(8): 100083. doi: 10.1016/j.actphy.2025.100083 shu

Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能

    通讯作者: 孙秀娟, sunxj594@xtu.edu.cn; 张玉微, ywzhang@scnu.edu.cn; 魏笛野, weidiye@163.com
  • 基金项目:

    湖南省教育厅科研基金 23B0114

    湖南省自然科学基金 2024JJ5368

    国家自然科学基金 22122402

    广东省自然科学基金 2021B1515020048

摘要: 尿素氧化反应(UOR)是一种很有前途的可再生能源生产技术,为电解水制氢提供了有效的替代方案,因此开发高效稳定的UOR催化剂至关重要。本文通过NaBH4还原和硒化策略合成了富含Co、Mn和Mo的硒化镍催化剂(NiCoMnMo-Se),该催化剂具有球形纳米颗粒与纳米片共存结构。X射线光电子能谱(XPS)、紫外-可见分光光度法(UV-vis)和原位bode相图表明,Mn和Mo的协同效应调节了Ni/Co的电子结构,提高了硒化物的电导率并加速加速电荷转移动力学,从而促进Ni2+/Co2+快速转变为活性Ni3+/Co3+,并显著降低了NiCoMnMo-Se的起始电位。在UOR过程中,大部分Mo和Se被氧化成钼酸盐和硒酸盐溶解在电解质中,暴露出更多的Ni(Co)OOH活性位点,从而加快UOR反应。另外,Mn的引入稳固了活性位点,极大地增强催化剂的整体稳定性。正如预期的那样,NiCoMnMo-Se催化剂在UOR过程中表现出优异的电催化和稳定性性能,在仅1.38 V vs. RHE (相对于可逆氢电极)的电位下实现了50 mA·cm−2的电流密度,并在50 mA·cm−2电流密度下运行50 h后电压仅上升3.0%。当NiCoMnMo-Se和商业Pt/C组装成用于碱性尿素电解的双电极体系时,它只需要1.59 V vs. RHE便达到50 mA·cm−2

English

    1. [1]

      P. Xie, Y. Wang, P. Yao, D. Zhang, H. Zhang, J. Cao, C. Liu, X. Mei, P. Song, X. Gong, et al., Electroanalysis 35 (2023) 8, https://doi.org/10.1002/elan.202300010. doi: 10.1002/elan.202300010

    2. [2]

      G.-R. Xu, J. Bai, L. Yao, Q. Xue, J.-X. Jiang, J.-H. Zeng, Y. Chen, J.-M. Lee, ACS Catal. 7 (2016) 1, https://doi.org/10.1021/acscatal.6b03049. doi: 10.1021/acscatal.6b03049

    3. [3]

      M. Li, X. Wang, K. Liu, H. Sun, D. Sun, K. Huang, Y. Tang, W. Xing, H. Li, G. Fu, Adv. Mater. 35 (2023) 30, https://doi.org/10.1002/adma.202302462. doi: 10.1002/adma.202302462

    4. [4]

      Y. Hu, B. Liu, L. Xu, Z. Dong, Y. Wu, J. Liu, C. Zhong, W. Hu, Acta Phys. Chim. Sin. 39 (2023) 2209004, https://doi.org/10.3866/PKU.WHXB202209004. doi: 10.3866/PKU.WHXB202209004

    5. [5]

      Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng, Y. Chen, ACS Catal. 8 (2018) 3, https://doi.org/10.1021/acscatal.7b03949. doi: 10.1021/acscatal.7b03949

    6. [6]

      Y. Huang, M. Li, F. Pan, Z. Zhu, H. Sun, Y. Tang, G. Fu, Carbon Energy 5 (2022) 3, https://doi.org/10.1002/cey2.279. doi: 10.1002/cey2.279

    7. [7]

      Y. Li, F.-M. Li, X.-Y. Meng, X.-R. Wu, S.-N. Li, Y. Chen, Nano Energy 54 (2018) 238, https://doi.org/10.1016/j.nanoen.2018.10.032. doi: 10.1016/j.nanoen.2018.10.032

    8. [8]

      X. Yan, Q.-T. Hu, G. Wang, W.-D. Zhang, J. Liu, T. Li, Z.-G. Gu, Int. J. Hydrogen Energy 45 (2020) 38, https://doi.org/10.1016/j.ijhydene.2020.05.052. doi: 10.1016/j.ijhydene.2020.05.052

    9. [9]

      D. Wang, W. Yan, S.H. Vijapur, G.G. Botte, J. Power Sources 217 (2012) 498, https://doi.org/10.1016/j.jpowsour.2012.06.029. doi: 10.1016/j.jpowsour.2012.06.029

    10. [10]

      M. Li, X. Wu, K. Liu, Y. Zhang, X. Jiang, D. Sun, Y. Tang, K. Huang, G. Fu, J. Energy Chem. 69 (2022) 506, https://doi.org/10.1016/j.jechem.2022.01.031. doi: 10.1016/j.jechem.2022.01.031

    11. [11]

      J. Kang, C. Sheng, J. Wang, H. Xu, B. Zhao, S. Chen, Y. Qing, Y. Wu, Int. J. Hydrogen Energy 48 (2023) 21, https://doi.org/10.1016/j.ijhydene.2022.11.210. doi: 10.1016/j.ijhydene.2022.11.210

    12. [12]

      X. Xu, T. Guo, J. Xia, B. Zhao, G. Su, H. Wang, M. Huang, A. Toghan, Chem. Eng. J. 425 (2021) 130514, https://doi.org/10.1016/j.cej.2021.130514. doi: 10.1016/j.cej.2021.130514

    13. [13]

      R. Wei, D. Li, H. Yin, X. Wang, C. Li, Acta Phys. Chim. Sin. 39 (2023) 2207035, https://doi.org/10.3866/PKU.WHXB202207035. doi: 10.3866/PKU.WHXB202207035

    14. [14]

      P. Babar, A. Lokhande, V. Karade, I.J. Lee, D. Lee, S. Pawar, J.H. Kim, J. Colloid Interface Sci. 557 (2019) 10, https://doi.org/10.1016/j.jcis.2019.09.012. doi: 10.1016/j.jcis.2019.09.012

    15. [15]

      H. Li, Y. Pu, W. Li, Z. Yan, R. Deng, F. Shi, C. Zhao, Y. Zhang, T. Duan, Small 20 (2024) 2403311, https://doi.org/10.1002/smll.202403311. doi: 10.1002/smll.202403311

    16. [16]

      Y. Li, X. Chen, Y. Yu, K. Zhang, Y. Cheng, W. He, Q. Luo, S. Gao, Appl. Catal. B Environ. Energy 354 (2024) 124150, https://doi.org/10.1016/j.apcatb.2024.124150. doi: 10.1016/j.apcatb.2024.124150

    17. [17]

      J. Ge, Z. Liu, M. Guan, J. Kuang, Y. Xiao, Y. Yang, C.H. Tsang, X. Lu, C. Yang, J. Colloid Interface Sci. 620 (2022) 442, https://doi.org/10.1016/j.jcis.2022.03.152. doi: 10.1016/j.jcis.2022.03.152

    18. [18]

      M. Song, X. Tao, Y. Wu, Y. Qing, C. Tian, H. Xu, X. Lu, Chem. Eng. J. 421 (2021) 129751, https://doi.org/10.1016/j.cej.2021.129751. doi: 10.1016/j.cej.2021.129751

    19. [19]

      K. Zhang, S. Wang, X. Li, H. Li, Y. Ni, Small 19 (2023) 28, https://doi.org/10.1002/smll.202300959. doi: 10.1002/smll.202300959

    20. [20]

      Q. Liu, F. Zhao, X. Yang, J. Zhu, S. Yang, L. Chen, P. Zhao, Q. Wang, Q. Zhang, J. Mater. Sci. Technol. 203 (2024) 97, https://doi.org/10.1016/j.jmst.2024.01.096. doi: 10.1016/j.jmst.2024.01.096

    21. [21]

      G. Qian, J. Chen, W. Jiang, T. Yu, K. Tan, S. Yin, Carbon Energy 5 (2023) 12, https://doi.org/10.1002/cey2.368. doi: 10.1002/cey2.368

    22. [22]

      M. Mathankumar, S.-L. Tu, P. Hasin, C.-K. Hsieh, J.-Y. Lin, Int. J. Hydrogen Energy 77 (2024) 373, https://doi.org/10.1016/j.ijhydene.2024.06.058. doi: 10.1016/j.ijhydene.2024.06.058

    23. [23]

      S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing, L. Wang, J. Yu, H. Liu, C. Chen, L. Yang, Appl. Catal. B Environ. 299 (2021) 120638, https://doi.org/10.1016/j.apcatb.2021.120638. doi: 10.1016/j.apcatb.2021.120638

    24. [24]

      L. Zhu, Y. Cheng, Y. Gong, Int. J. Hydrogen Energy 69 (2024) 549, https://doi.org/10.1016/j.ijhydene.2024.05.001. doi: 10.1016/j.ijhydene.2024.05.001

    25. [25]

      S. Xu, D. Jiao, X. Ruan, Z. Jin, Y. Qiu, J. Fan, L. Zhang, W. Zheng, X. Cui, J. Colloid Interface Sci. 671 (2024) 46, https://doi.org/10.1016/j.jcis.2024.05.155. doi: 10.1016/j.jcis.2024.05.155

    26. [26]

      H. Zhao, M. Liu, X. Du, X. Zhang, Int. J. Hydrogen Energy 58 (2024), https://doi.org/10.1016/j.ijhydene.2024.01.186. doi: 10.1016/j.ijhydene.2024.01.186

    27. [27]

      Z. Jiang, L. Zheng, M. Liu, H. Xu, S. Chen, F. Xiong, Y. Liao, Y. Liao, Y. Qing, Y. Wu, Appl. Surf. Sci. 638 (2023), https://doi.org/10.1016/j.apsusc.2023.158058. doi: 10.1016/j.apsusc.2023.158058

    28. [28]

      J. Kang, F. Yang, C. Sheng, H. Xu, J. Wang, Y. Qing, Y. Wu, X. Lu, Small 18 (2022) 24, https://doi.org/10.1002/smll.202200950. doi: 10.1002/smll.202200950

    29. [29]

      X. Xu, P. Du, T. Guo, B. Zhao, H. Wang, M. Huang, ACS Sustain. Chem. Eng. 8 (2020) 19, https://doi.org/10.1021/acssuschemeng.0c01814. doi: 10.1021/acssuschemeng.0c01814

    30. [30]

      T. Guo, X. Xu, X. Wang, J. Zhou, H. Wang, Z. Shi, M. Huang, Chem. Eng. J. 417 (2021) 128067, https://doi.org/10.1016/j.cej.2020.128067. doi: 10.1016/j.cej.2020.128067

    31. [31]

      X. Li, P. Babar, K. Patil, S. Kale, E. Jo, X. Chen, Z. Hussain, J.H. Kim, Y.T. Yoo, Mater. Chem. Phys. 287 (2022) 126310, https://doi.org/10.1016/j.matchemphys.2022.126310. doi: 10.1016/j.matchemphys.2022.126310

    32. [32]

      S. Tao, G. Zhang, B. Qian, J. Yang, S. Chu, C. Sun, D. Wu, W. Chu, L. Song, Appl. Catal. B Environ. 330 (2023) 122600, https://doi.org/10.1016/j.apcatb.2023.122600. doi: 10.1016/j.apcatb.2023.122600

    33. [33]

      X. Xu, X. Wang, S. Huo, X. Liu, X. Ma, M. Liu, s, J. Adv. Mater. 36 (2023) 8, https://doi.org/10.1002/adma.202306844. doi: 10.1002/adma.202306844

    34. [34]

      L. Yu, X. Pang, Z. Tian, S. Wang, L. Feng, Electrochim. Acta 440 (2023) 141724, https://doi.org/10.1016/j.electacta.2022.141724. doi: 10.1016/j.electacta.2022.141724

    35. [35]

      Q. Cao, W. Huang, J. Shou, X. Sun, K. Wang, Y. Zhao, R. Ding, W. Lin, E. Liu, P. Gao, J. Colloid Interface Sci. 629 (2023) 33, https://doi.org/10.1016/j.jcis.2022.08.095. doi: 10.1016/j.jcis.2022.08.095

    36. [36]

      W. Shi, X. Sun, R. Ding, D. Ying, Y. Huang, Y. Huang, C. Tan, Z. Jia, E. Liu, Chem. Commun. 56 (2020) 48, https://doi.org/10.1039/d0cc02132f. doi: 10.1039/d0cc02132f

    37. [37]

      S. Xu, X. Ruan, M. Ganesan, J. Wu, S.K. Ravi, X. Cui, Adv. Funct. Mater. 34 (2024) 18, https://doi.org/10.1002/adfm.202313309. doi: 10.1002/adfm.202313309

    38. [38]

      P. Qiao, G. Li, X. Xu, D. Wang, F. Wang, L. Xu, L. Lu, H. Cong, M. Sun, Adv. Funct. Mater. 35 (2025) 2421136, https://doi.org/10.1002/adfm.202421136. doi: 10.1002/adfm.202421136

    39. [39]

      H.-M. Zhang, J. Li, Y. Gao, J. Sun, S. Geng, Y. Meng, Fuel 371 (2024) 132111, https://doi.org/10.1016/j.fuel.2024.132111. doi: 10.1016/j.fuel.2024.132111

    40. [40]

      Y. Gong, Y. Zhi, Y. Lin, T. Zhou, J. Li, F. Jiao, W. Wang, Dalton Trans. 48 (2019) 20, https://doi.org/10.1039/c9dt00957d. doi: 10.1039/c9dt00957d

    41. [41]

      Z. Chen, R. Zheng, H. Zou, R. Wang, C. Huang, W. Dai, W. Wei, L. Duan, B.-J. Ni, H. Chen, Chem. Eng. J. 465 (2023) 142684, https://doi.org/10.1016/j.cej.2023.142684. doi: 10.1016/j.cej.2023.142684

    42. [42]

      Y. Zhao, F. Ma, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, Z. Zheng, B. Huang, J. Alloys Compd. 903 (2022) 163741, https://doi.org/10.1016/j.jallcom.2022.163741. doi: 10.1016/j.jallcom.2022.163741

    43. [43]

      J. Jiang, G. Xu, B. Gong, J. Zhu, W. Wang, T. Zhao, Y. Feng, Q. Wu, S. Liu, L. Zhang, Adv. Funct. Mater. 35 (2024) 2, https://doi.org/10.1002/adfm.202412685. doi: 10.1002/adfm.202412685

    44. [44]

      X. Xu, H. Liao, L. Huang, S. Chen, R. Wang, S. Wu, Y. Wu, Z. Sun, H. Huang, Appl. Catal. B Environ. 341 (2024) 123312, https://doi.org/10.1016/j.apcatb.2023.123312. doi: 10.1016/j.apcatb.2023.123312

    45. [45]

      Z. Fang, L. Peng, H. Lv, Y. Zhu, C. Yan, S. Wang, P. Kalyani, X. Wu, G. Yu, ACS Nano 11 (2017) 9, https://doi.org/10.1021/acsnano.7b05481. doi: 10.1021/acsnano.7b05481

    46. [46]

      L.-F. Zhai, Z.-X. Chen, J.-X. Qi, M. Sun, J. Hazard Mater. 428 (2022) 128245, https://doi.org/10.1016/j.jhazmat.2022.128245. doi: 10.1016/j.jhazmat.2022.128245

    47. [47]

      J. Huang, S. Wang, J. Nie, C. Huang, X. Zhang, B. Wang, J. Tang, C. Du, Z. Liu, J. Chen, Chem. Eng. J. 417 (2021) 128055, https://doi.org/10.1016/j.cej.2020.128055. doi: 10.1016/j.cej.2020.128055

    48. [48]

      X. Wang, H. Tian, M. Pi, D. Zhang, S. Chen, Int. J. Hydrogen Energy 45 (2020) 22, https://doi.org/10.1016/j.ijhydene.2020.02.173. doi: 10.1016/j.ijhydene.2020.02.173

    49. [49]

      J. Zhang, H. Ma, J. Ma, M. Hu, Q. Li, S. Chen, T. Ning, C. Ge, X. Liu, L. Xiao, et al., Acta Phys. Chim. Sin. 39 (2023) 2111037, https://doi.org/10.3866/PKU.WHXB202111037. doi: 10.3866/PKU.WHXB202111037

    50. [50]

      X. Yang, H. Zhang, W. Xu, B. Yu, Y. Liu, Z. Wu, Catal. Sci. Technol. 12 (2022) 14, https://doi.org/10.1039/d2cy00308b. doi: 10.1039/d2cy00308b

    51. [51]

      D. Ma, Y. Jia, Y. Li, H. Yang, F. Wang, X. Zheng, G. Shao, Q. Xiong, Z. Shen, M. Liu, et al., J. Mater. Sci. Technol. 197 (2024) 207, https://doi.org/10.1016/j.jmst.2024.01.054. doi: 10.1016/j.jmst.2024.01.054

    52. [52]

      H.-L. Liao, X.-L. Wu, X.-J. Sun, Tungsten 6 (2024) 4, https://doi.org/10.1007/s42864-024-00267-z. doi: 10.1007/s42864-024-00267-z

    53. [53]

      X. Li, Q. Hu, H. Wang, M. Chen, X. Hao, Y. Ma, J. Liu, K. Tang, A. Abudula, G. Guan, Appl. Catal. B Environ. 292 (2021) 120172, https://doi.org/10.1016/j.apcatb.2021.120172. doi: 10.1016/j.apcatb.2021.120172

    54. [54]

      S. Sirisomboonchai, X. Li, N. Kitiphatpiboon, R. Channoo, S. Li, Y. Ma, S. Kongparakul, C. Samart, A. Abudula, G. Guan, J. Mater. Chem. A 8 (2020) 32, https://doi.org/10.1039/d0ta04172f. doi: 10.1039/d0ta04172f

    55. [55]

      L. Chen, Z.-H. Yin, J.-Y. Cui, C.-Q. Li, K. Song, H. Liu, J.-J. Wang, J. Am. Chem. Soc. 146 (2024) 39, https://doi.org/10.1021/jacs.4c09252. doi: 10.1021/jacs.4c09252

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  22
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-08-15
  • 收稿日期:  2025-01-21
  • 接受日期:  2025-03-23
  • 修回日期:  2025-03-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章