Browse Articles
Call for papers
The Chinese Journal of Structural Chemistry is an international peer-reviewed journal published in English. It publishes original research works about the structure and property of matter, including but not limited to coordination chemistry, organometallic chemistry, nanoscale chemistry, heterogeneous catalysis, homogenous catalysis, energy chemistry, environment science, and life science in the form of Articles, Reviews, Short Communications, Perspectives, Highlights, and News & Views. The journal is published twelve issues a year by Fujian Institute of Research on the Structure of Matter, CAS and is available online:
http://www.cjsc.ac.cn
https://www.sciencedirect.com/journal/chinese-journal-of-structural-chemistry
Contact information:
E-mail: cjsc@fjirsm.ac.cn; Tel: +86-591-63173769
Display Method: |
美国西北大学黄嘉兴教授、湖南大学周一歌教授及成都电子科技大学康毅进教授提出 “流动电催化”(Fluidized Electrocatalysis)策略,显著提高电催化剂的抗疲劳性能以及电催化反应的稳定性,甚至可以让很不稳定的催化剂达到持久稳定的催化效果。
在电催化反应中,催化剂材料通常被粘附在电极,比如碳电极的表面,而后浸入电解液中进行长时间、连续的电化学反应(图1a)。电催化反应有一些普遍的疲劳机制,例如反应中间体可能导致催化剂表面中毒,催化剂颗粒在长时间的电化学“压力”下发生团聚、烧结、溶解或钝化等。另外,反应活性物种到催化剂表面的扩散受限也会导致催化电流衰减。催化剂疲劳会大大降低催化剂的工作效率,缩短其寿命,导致整个电化学体系性能下降。针对此问题,传统的策略是从催化剂本身出发调控其表面状态和化学成分,或通过改进催化剂载体材料来防止催化剂颗粒的聚集和脱落,然而由于催化剂疲劳机制多种多样、催化剂及其载体的材料、成分和结构也各不相同,这些针对于催化材料本身的解决方案往往只适用于特定的催化剂,不具有普适性。
图1
在电催化过程中,电极反应只有电子转移步骤需要依赖电极。然而在常规催化体系中,由于电极一直处于极化状态,这会对催化剂产生不必要的额外的电化学压力,从而导致其疲劳和性能衰减。基于以上思考并结合单颗粒电分析化学的进展,美国西北大学黄嘉兴教授、湖南大学周一歌教授及成都电子科技大学康毅进教授合作,提出“流动电催化”的新策略来提高电催化剂的抗疲劳性能(图1b):催化剂颗粒并非以传统方式固定在电极上,而是在电解液中流动。
综上所述,该工作提出了流动电催化策略,将催化剂颗粒的工作模式由传统的长时间、连续性工作转变为轮流、间断性工作,避免了电化学压力的不断积累,同时,催化剂颗粒将经历更快的反应动力学并输出更高的电流效率,有利于抑制材料性能的衰减,提高催化剂长时间工作的稳定性。
当然,该流动策略的操作方式不可避免会带来体积能量密度的局限,但仍然可付诸大型固定电源供给与大规模电合成等实际应用场景。同时,流动催化剂较固定催化剂具有更高的稳定性,且易于回收及再利用,因此长时间的工作成本将远远低于固定催化剂。衡量体积能量密度与成本,该策略与改善、发展新型催化剂的实践可结合并行,有望发展成一种普适的提高电催化体系总体性能及稳定性的简单、高效的新方法。
该工作以封面文章形式发表在CCS Chemistry 2020年第一期,并于近期被美国化学会新闻周刊Chemical & Engineering News (C&EN)报道(https://cen.acs.org/synthesis/catalysis/Free-floating-electrocatalysts-outperform-tethered/98/web/2020/02)。牛津大学Richard G.Compton教授评价该工作为:“The work is groundbreaking in that it takes particle-impact experiments from the academic study of single nanoparticle electrocatalysis and suggests that they can be scaled up with considerable benefit.”
文章详情:
Fluidized Electrocatalysis
Yi-Ge Zhou, Yijin Kang, and Jiaxing Huang
Link: https://doi.org/10.31635/ccschem.020.201900065
Citation: CCS Chem. 2020, 2, 31–41