Browse Articles

Display Method:      

Display Method:          |     

目次
第42卷第5期封面和目次
2026, 42(5):
[Abstract](113) [FullText HTML] [PDF 1467KB](0)
Abstract:
论文
Ionic polarization engineering of polymeric carbon nitride toward efficient H2O2 photosynthesis
Yao Xie , Shuangjun Li , Chao Chen , Siyu Fan , Ying Tao , Qitao Zhang
2026, 42(5): 100183  doi: 10.1016/j.actphy.2025.100183
[Abstract](180) [FullText HTML] [PDF 4724KB](0)
Abstract:
熔盐极化技术利用高温熔盐中的离子相互作用,成为一种强大但尚未充分开发的结构工程策略。该技术能实现对聚合氮化碳(PCN)的精确结构调控,为提升光催化H2O2合成效率提供了新思路。本研究通过调控LiCl/KCl熔盐比例,成功构建了两种不同晶相结构:以七嗪单元为主的LKCN-0.95和七嗪-三嗪给受体(D-A)结结构的LKCN-0.2。结合实验与理论分析发现,富Li+熔盐体系促进高度有序七嗪骨架形成,而K+主导体系则有利于三嗪单元的引入。优化后的七嗪主导结构和七嗪-三嗪结结构分别展现出27倍和42倍的光合成H2O2性能提升(3.3和5.2 mmol L−1 h−1),较原始PCN(0.12 mmol L−1 h−1)显著提高,并保持五个循环的优异稳定性。机理研究表明,结构调控可增强电荷分离效率并优化氧吸附/活化过程,从而促进选择性2e氧还原反应。该工作不仅深化了对熔盐驱动结构演变的理解,更为设计高效太阳能驱动H2O2人工光合成催化剂提供了可规模化制备的新方法。
S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides
Aoyun Meng , Zhenhua Li , Guoyuan Xiong , Zhen Li , Jinfeng Zhang
2026, 42(5): 100186  doi: 10.1016/j.actphy.2025.100186
[Abstract](170) [FullText HTML] [PDF 8319KB](1)
Abstract:
随着人们对农药污染的日益关注,尤其是在食品、谷物和肉类产品领域,寻找高效且稳定的光催化剂用于污染物降解成为一个重要研究方向。本研究成功合成了一种新型S型异质结光催化剂Al6Si2O13/BiOBr(ASO/BO)纳米复合材料,旨在增强电荷转移并提高对常见农业污染物三唑磷(TAP)和敌敌畏(DDVP)的光催化降解效率。性能评估表明,60-ASO/BO纳米复合材料(ASO负载比为60%)表现出卓越的降解效率,在100 min内将农药(TAP)浓度从100%降至28.0%,且在四次循环(400 min)后仍保持94.7%的初始活性。相比之下,单相ASO和BO的降解效率显著降低,分别仅为56.6%和58.8%。对于DDVP,该复合材料也展现出优异的光催化降解活性,在100 min内将其浓度从100%降至32.3%,远优于ASO(100%至67.8%)和BO(100%至47.9%)。这一卓越性能归因于S-scheme异质结结构所带来的增强电荷转移效应。通过飞秒瞬态吸收光谱(fs-TAS)、吸附能理论计算、差分电荷密度分析、开尔文探针力显微镜(KPFM)和原位X射线光电子能谱(XPS)进一步验证了电荷转移路径和机制。研究结果显示,S型电荷转移效应对于提升光催化性能至关重要。总体而言,ASO/BO的S型异质结为持久高效的光催化降解环境污染物提供了可靠途径,在农业、食品安全以及谷物和肉类产品保鲜领域具有广阔的应用前景。
Advanced oxidation technology synergistic photothermal degradation of antibiotics over inorganic/organic S-scheme heterojunction
Qiang Cheng , Jingping Li , Zhendong Ke , Jiaming Li , Kai Wang
2026, 42(5): 100187  doi: 10.1016/j.actphy.2025.100187
[Abstract](196) [FullText HTML] [PDF 6035KB](0)
Abstract:
通过合理设计能够同时利用太阳能和高级氧化工艺(AOPs)的无机/有机催化剂,对抗生素污染物的降解具有重要前景。本研究采用超声辅助技术开发了具有氧空位的MoO2-x/g-C3N4 (MOCN) S型异质结,并将其作为太阳能驱动的过一硫酸盐(PMS)催化剂用于抗生素降解。利用密度泛函理论、飞秒瞬态吸收光谱和原位XPS分析,证实了MoO2-x与g-C3N4之间内建电场的形成以及S型异质结中的电荷转移路径。同时,MOCN异质结的氧空位和光热效应进一步加速了电子迁移速率。与原始MoO2-x和g-C3N4相比,优化后的MOCN-2催化剂在20 min内对四环素(TC)去除率达到了90.9%。连续流实验和抗菌活性实验共同验证了该催化剂在水处理应用中的实际可行性。基于上述分析,提出了TC降解的可能机制。本研究为合成S型异质结以改善废水处理提供了新策略。
Corn-distillers-derived hard carbon: a sustainable high-rate, long-life anode for sodium-ion batteries
Xue Zhang , Zihan He , Yingqi Wu , Weilai Yu , Tao Liu
2026, 42(5): 100199  doi: 10.1016/j.actphy.2025.100199
[Abstract](207) [FullText HTML] [PDF 4729KB](0)
Abstract:
以玉米酒糟为原料制备的硬碳(HC)是一种可持续、低成本钠离子电池(SIBs)负极候选材料,但其实际应用一直受限于其不足的可逆容量。本研究报道一种温度梯度处理法,该方法可精确调控玉米酒糟衍生硬碳的层间距、孔隙率和石墨化程度,从而获得卓越的电化学性能。优化后的材料具有0.378 nm层间距和1.68 nm主孔径,展现出优异的高倍率性能:在1.0和2.0 A g-1电流密度下分别实现289与198 mAh g-1的比容量,且在2.0 A g-1下循环700次后容量保持率达83%。通过原位X射线衍射与非原位拉曼光谱联用,揭示出“吸附-插层协同孔隙填充”的独特储钠机制,该机制有助于解释其快速动力学特性和长循环稳定性。这些结果表明,通过精准调控生物质衍生硬碳的结构策略,可实现实用化SIB负极所需的容量、倍率性能和循环寿命——使这种储量丰富、源自废弃物的材料大幅迈向商业化。
Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light
Xiaofei Zhang , Shanhao Xu , Zhiyuan Wang , Long He , Tiangcheng Huang , Yongming Xu , Yucui Bian , Yike Li , Haijun Chen , Zhongjun Li
2026, 42(5): 100202  doi: 10.1016/j.actphy.2025.100202
[Abstract](207) [FullText HTML] [PDF 5388KB](0)
Abstract:
以葡萄糖为碳源制备了碳掺杂BiOCl。碳掺杂剂主要富集于晶体表面或浅层晶格中,部分与氧原子成键。在室温可见光条件下,以分子氧为绿色氧化剂,碳掺杂BiOCl催化苄胺自偶联转化率(> 99%)是纯BiOCl的12倍。该掺杂催化剂对胺类底物具有良好官能团耐受性,并表现出晶面依赖的光催化活性。综合表征证实:碳掺杂在晶体原带隙中形成掺杂能级,使BiOCl吸收范围拓宽至可见光区并降低其功函数;同时增强了BiOCl内部电场,其中单层/双层石墨烯为最有效掺杂形态,可捕获经电子-空穴分离后跃迁至高能级的导带电子,从而抑制电子-空穴复合,提高光生载流子分离效率;此外还促进了O2活化。本研究为光催化剂理性设计及实现高效定向有机转化提供了参考。
MolUNet++: Adaptive-grained explicit substructure and interaction aware molecular representation learning
Fanding Xu , Zhiwei Yang , Sirui Wu , Wu Su , Lizhuo Wang , Deyu Meng , Jiangang Long
2026, 42(5): 100209  doi: 10.1016/j.actphy.2025.100209
[Abstract](137) [FullText HTML] [PDF 7379KB](0)
Abstract:
分子表示学习是人工智能驱动药物研发中的关键任务。尽管图神经网络(GNN)在该领域已表现出优异性能并被广泛应用,但高效提取并显式解析官能团仍是一项挑战。为此,我们提出了MolUNet++模型,该模型通过分子边收缩池化(Molecular Edge Shrinkage Pooling,MESPool)实现分层子结构提取,利用嵌套式UNet框架进行多粒度特征融合,并结合子结构掩蔽解释器实现分子片段的定量分析。我们在分子性质预测、药物-药物相互作用(Drug-Drug Interaction,DDI)预测及药物-靶标相互作用(Drug-Target Interaction,DTI)预测等任务上对MolUNet++进行了评估。实验结果表明,MolUNet++不仅在预测性能上优于传统GNN模型,同时展现出显式、直观且符合化学逻辑的可解释性,为药物设计与优化领域的研究者提供了有价值的启示与工具。
T2MAT (text-to-material): A universal agent for generating material structures with goal properties from a single sentence
Zhilong Song , Shuaihua Lu , Qionghua Zhou , Jinlan Wang
2026, 42(5): 100213  doi: 10.1016/j.actphy.2025.100213
[Abstract](129) [FullText HTML] [PDF 3388KB](1)
Abstract:
人工智能生成内容(AIGC)——由AI系统无需人工干预自主生成的内容——已显著提升多个领域的效率。然而,材料科学中的AIGC技术面临双重挑战:既要高效发现超越现有数据库范围的新型材料,又需确保晶体结构的对称性与稳定性。为应对该挑战,我们开发了T2MAT(文本到材料),这是一种端到端智能体,能够通过全面探索化学空间并结合全自动第一性原理验证,将用户输入的文本转化为超越现有数据库范围、具有目标性能的新型材料结构的逆向设计。此外,我们提出CGTNet (晶体图变换器网络),这是一种专门用于捕捉长程相互作用的图神经网络,可显著提高性质预测的准确性和数据效率,从而增强逆向设计的可靠性。通过这些创新,T2MAT降低了对人类专业知识的依赖,加速了高性能功能材料的发现,为真正全自动的材料设计铺平了道路。
High-rate and long-cycling P2-type cathode material for sodium-ion batteries
Peicai Li , Xubin Wang , Qinghua Zhang , Bowen Wang , Xiaohui Rong , Yong-Sheng Hu , Zhongtao Li
2026, 42(5): 100214  doi: 10.1016/j.actphy.2025.100214
[Abstract](228) [FullText HTML] [PDF 6644KB](0)
Abstract:
钠离子电池在启动电源、储能调频等功率型应用中潜力显著,其发展亟需兼具高倍率性能和长循环稳定性的正极材料。传统P2-Na0.67Ni0.33Mn0.67O2材料虽具有高能量密度优势,但在高电压下会出现结构退化,影响其作为功率型电源的长期可靠性。在此,本研究采用多元素掺杂的策略,设计了P2-Na0.67Zn0.05Ni0.23Fe0.1Mn0.57Ti0.05O2正极材料。该材料通过抑制高电压相变,提升了结构稳定性,在3C高倍率下循环300次后仍具有85%以上的容量保持率,展现出优异的倍率和循环性能,为功率型钠离子电池正极的设计提供了思路。
Interfacial stabilization of alkali metal oxides on carbon spheres for high-performance CO2 chemisorption
Feifan Zhao , Feiyan Xu , Jiaguo Yu
2026, 42(5): 100234  doi: 10.1016/j.actphy.2025.100234
[Abstract](169) [FullText HTML] [PDF 4352KB](0)
Abstract:
高效捕集低浓度二氧化碳(CO2)需要兼具强反应活性与长期结构稳定性的化学吸附剂。碱金属氧化物虽具潜力,但存在快速烧结问题,会严重减少可接触活性位点。本研究开发了一种普适性界面策略,将Li2O、Na2O和K2O以高度分散的非晶态域形式锚定于空心碳球(分别命名为Li-HCS、Na-HCS和K-HCS),形成稳定的M–O–C键合位点。这种界面结构既可阻止氧化物迁移,又能增强表面碱性,显著强化CO2结合能力。在碱金属负载空心碳球中,K-HCS表现出最优异的CO2吸附容量(273 K、1 bar (1 bar = 105 Pa)条件下4.9 mmol g−1)、最快吸附动力学(313 K、1 bar条件下13.56 mol kg−1 h−1),以及最佳低压脱除效率(273 K、0.15 bar条件下44%)。密度泛函理论计算进一步揭示,随着电子给体能力与极化率从Li到Na再到K的增强,其吸附强度与分子活化能呈现单调递增规律。该研究为稳定碱金属氧化物提供了普适性方案,并为发展低压CO2捕集材料提供了机理层面的新见解。
综述
Synergistic optimization of ion migration and electron transfer in sodium-ion battery cathode materials
Shuang Wang , Xiaoqi Fu , Shanshan Yao
2026, 42(5): 100206  doi: 10.1016/j.actphy.2025.100206
[Abstract](224) [FullText HTML] [PDF 17749KB](2)
Abstract:
钠离子电池(SIBs)凭借钠资源丰富、成本低廉及环境友好等优势,在大规模储能系统中展现出巨大应用潜力。正极材料的离子迁移与电子转移速率是决定电池倍率性能、循环寿命及容量保持率的关键因素,二者的协同提升对突破性能瓶颈至关重要。本文以钠离子电池三大主流正极材料——层状过渡金属氧化物(LTMOs)、聚阴离子化合物(PACs)和普鲁士蓝类似物(PBAs)为研究对象,系统梳理了不同材料体系中离子迁移通道与电子转移路径的结构基础,深入解析了二者的协同调控机制。结合最新研究成果,从元素优化、结构设计与复合改性三个维度,阐释了协同提升离子通道通畅性与电子通路连续性的具体路径与作用机理,提炼出高性能SIBs正极材料的普适性设计策略,为进一步开发兼具高容量、高倍率性能与稳定的SIBs正极材料提供了有益参考。
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net