Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol
- Corresponding author: ZHANG Lei, lnpuzhanglei@163.com
Citation:
WANG Dong-zhe, FENG Xu, ZHANG Jian, CHEN Lin, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Cai-shun, ZHANG Zheng-yi. Effect of promoter M(M=Cr, Zn, Y, La) on CuO/CeO2 catalysts for hydrogen production from steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(10): 1251-1257.
HOU H J M. Hydrogen energy production using manganese/semiconductor system inspired by photosynthesisInt[J]. J Hydrogen Energy, 2017,42(12):8530-8538. doi: 10.1016/j.ijhydene.2017.01.100
WEI Z, KE Y, PEI P, YU W, CHU X Y, LI S L, YANG K. Hydrogen production from cylindrical methanol steam reforming microreactor with porous Cu-Al fiber sintered felt[J]. Int J Hydrogen Energy, 2018,43(7):3643-3654. doi: 10.1016/j.ijhydene.2017.12.118
XI H, HOU X, LIU Y, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem, 2015,53(44):11886-11889.
HAO C, ANDOLINA C M, LI J, CURNAN M T, SAIDI W A, ZHOU G W, YANG J C, VESER G. Dependence of H2 and CO2 selectivity on Cu oxidation state during partial oxidation of methanol on Cu/ZnO[J]. Appl Catal A: Gen, 2018,556:64-72. doi: 10.1016/j.apcata.2018.02.028
JAMPA S, JAMIESON A M, CHAISUWAN T, LUENGNARUEMITCHAI A, WONGKASEMJIT S. Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy, 2017,42(22):15073-15084. doi: 10.1016/j.ijhydene.2017.05.022
LIU Y, HAYAKAWA T, TSUNODA T, SUZUKI K, HAMAKAWA S, MURATA K, SHIOZAKI R, ISHⅡ T, KUMAGAI M. Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts[J]. Top Catal, 2003,22(3/4):205-213. doi: 10.1023/A:1023519802373
LI Y F, DONG X F, LIN W M. Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol[J]. Int J Hydrogen Energy, 2004,29(15):1617-1621. doi: 10.1016/j.ijhydene.2004.03.001
PAPAVASILIOU J, AVGOUROPOULOS G, IOANNIDES T. Effect of dopants on the performance of CuO-CeO2 catalysts in methanol steam reforming[J]. Appl Catal B: Environ, 2007,69(3/4):226-234.
ZAHEDI T O, MAJID T, DEHGHANI K A. Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous Cu/SBA-15 nanocatalyst[J]. Int J Hydrogen Energy, 2018,43(31):14103-14120. doi: 10.1016/j.ijhydene.2018.06.035
YANG S Q, ZHOU F, LIU Y J, ZHANG L, YU C, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of support calcination atmospheres on the activity of CuO/CeO2 catalysts for methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(8):992-999. doi: 10.3969/j.issn.0253-2409.2018.08.011
YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007
YANG Shu-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/ Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018,46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014
HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
DAI B, ZHOU G, GE S, XIE H M, JIAO Z J, ZHANG G Z, XIONG K. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts[J]. Can J Chem Eng, 2017,95(4):634-642. doi: 10.1002/cjce.22730
HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017,38:1822-1828. doi: 10.7503/cjcu20170158
ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
SHE W, QI T, CUI M, YAN P, NG S. W, LI W, LI G. Catalytic performance of CeO2-supported Ni catalyst for hydrogenation of nitroarenes fabricated via coordination-assisted strategy[J]. ACS Appl Mater Inter, 2018,10(17):14698-14707. doi: 10.1021/acsami.8b01187
ZHANG Y, ZHOU Y, PENG C, SHI J, WANG Q, HE L, SHI L. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation[J]. Appl Surf Sci, 2018,436:981-988. doi: 10.1016/j.apsusc.2017.12.036
PENG X, OMASTA T J, ROLLER J M, MUSTAIN W E. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Frontiers Energy, 2017,11(3):299-309. doi: 10.1007/s11708-017-0495-1
BENNICI S, GERVASINI A, RAVASIO N, ZACCHERIA F. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B, 2003,107(22):5168-5176. doi: 10.1021/jp022064x
FANG Z, REHMAN S U, SUN M, YUAN Y P, JIN S W, HONG B. Hybrid NiO-CuO mesoporous nanowire array with abundant oxygen vacancies and a hollow structure as a high-performance asymmetric supercapacitor[J]. J Mater Chem A, 2018,6:21131-21142. doi: 10.1039/C8TA08262F
AFONASENKO T N, TSYRULNIKOV P G, GULYAEVA T I, LEONTEVA N N, SMIRNOVA N S, KOCHUBEI D I, SUPRUN E A, SALANOV A N. (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2: The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties[J]. Kinet Catal, 2013,54(1):59-68. doi: 10.1134/S0023158412060018
KULKARNI G U, RAO C N R. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with CO and methanol[J]. Top Catal, 2003,22(3):183-189.
ESPINOS J P, MORALES J, BARRANCO A, CABALLERO A, HOLGADO J P, GONZALES-ELIPE A R. Interface effects for Cu, CuO, and Cu2O deposited on SiO2 and ZrO2. XPS determination of the valence state of copper in Cu/SiO2 and Cu/ZrO2 catalysts[J]. J Phys Chem B, 2002,106(27):6921-6929. doi: 10.1021/jp014618m
NATILE M M, GALENDA A, GLISENTI A. CuO/CeO2 nanocomposites: An XPS study[J]. Surf Sci Spectra, 2009,16(1):13-26. doi: 10.1116/11.20061005
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
Wanmin Cheng , Juan Du , Peiwen Liu , Yiyun Jiang , Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Jian Jin , Jing Cheng , Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2; f: equil
a: CuO/CeO2; b: Cr/CuO/CeO2; c: Zn/CuO/CeO2; d: Y/CuO/CeO2; e: La/CuO/CeO2; f: equil