Citation: ZHANG Qiang, LIU Lu, YU Meng-yun, Zhou ZHOU. Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1137-1145. shu

Effect of sulfuric acid modification of Al2O3 support on the SCR performance of MnCe/Al2O3 catalysts

  • Corresponding author: ZHANG Qiang, xyz@upc.edu.cn
  • Received Date: 4 April 2019
    Revised Date: 15 July 2019

    Fund Project: the National Natural Science Foundation of China 21406270The project was supported by the National Natural Science Foundation of China (21406270)

Figures(8)

  • With unmodified and modified Al2O3 as the support, a series of Mn-Ce catalysts were prepared by impregnation method and characterized by XRD, BET, NH3-TPD, H2-TPR and FT-IR. The catalytic performance in the NH3-SCR of NOx was investigated. The results show that the sulfuric acid modification to the support decreased the metal dispersion and weakened the oxidization property of the catalyst, increased the concentration of acid sites, especially, B acid sites. Besides, the optimum temperature window ranges for SCR of the modified catalyst moved to higher temperature and broadened, and increased with the increase of modified liquid concentration. The unmodified catalyst and the catalyst modified by 0.2 mol/L solution had same SCR reactivity within the temperature range of 200-250 ℃. However, the modified catalyst showed the best resistance to SO2 and H2O and presented 70% NO conversion at 250 ℃.
  • 加载中
    1. [1]

      JI Sheng-xiao, ZHANG Wei-jian, ZHENG Yu-ying, ZHU Jian-feng. Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3[J]. J Fuel Chem Technol, 2019,47(2):224-235. doi: 10.3969/j.issn.0253-2409.2019.02.012

    2. [2]

      KANG M, PARK J H, CHOI J S, PARK E D, YIE J E. Low-temperature catalytic reduction of nitrogen oxides with ammonia over supported manganese oxide catalysts[J]. Korean J Chem Eng, 2007,24(1):191-195.  

    3. [3]

      MOUSAVIA S M, PANAHI P N. Modeling and optimization of NH3-SCR performance of MnOx/γ-alumina nanocatalysts by response surface methodology[J]. J Taiwan Inst Chem E, 2016,69:68-77. doi: 10.1016/j.jtice.2016.09.033

    4. [4]

      GUO Jing, LI Cai-ting, LU Pei, CUI Hua-fei, PENG Dun-liang, WEN Qing-bo. Research on SCR denitrification of MnOx/Al2O3 modified by CeO2 and its mechanism at low temperature[J]. Environ sci, 2011(8):2240-2246.  

    5. [5]

      JIN R B, LIU Y, WU Z B, WANG H Q, GU T T. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3:A comparative study[J]. Chemosphere, 2010,78(9):1160-1166. doi: 10.1016/j.chemosphere.2009.11.049

    6. [6]

      KANG M, PARK E D, KIM J M, YIE J E. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catal Today, 2006,111(3/4):236-241.  

    7. [7]

      QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. App Catal B:Environ, 2003,44(3):217-225. doi: 10.1016/S0926-3373(03)00100-0

    8. [8]

      NOTOYA F, SU C, SASAOKA E, NOJIMA S. Effect of SO2 on the low-temperature selective catalytic reduction of nitric oxide with ammonia over TiO2, ZrO2, and Al2O3[J]. Ind Eng Chem Res, 2001,40(17):3732-3739. doi: 10.1021/ie000972f

    9. [9]

      XIE G, LIU Z, ZHU Z, LIU Q, GE J, HUANG Z. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent Ⅱ. Promotion of SCR activity by SO2 at high temperatures[J]. J Catal, 2004,224(1):42-49.

    10. [10]

      YAO X J, WANG Z, YU S H, YANG F, DONG L. Acid pretreatment effect on the physicochemical property and catalytic performance of CeO2 for NH3-SCR[J]. Appl Catal A:Gen, 2017,542:282-288. doi: 10.1016/j.apcata.2017.06.003

    11. [11]

      ZHANG L, ZOU W X, MA K L, CAO Y, XIONG Y, WU S G, TANG C J, GAO F, DONG L. Sulfated temperature effects on the catalytic activity of CeO2 in NH3-selective catalytic reduction conditions[J]. J Phys Chem C, 2015,119(2):1155-1163. doi: 10.1021/jp511282c

    12. [12]

      LI Jing. Research on low-temperature Mn-based deNOx catalyst[D]. Beijing: Institute of Petrochemical Technology, 2015.

    13. [13]

      ZHAO W W, LI C T, LU P, WEN Q B, ZHAO Y P, ZHANG X, FAN C Z, TAO S S. Iron, lanthanumand manganese oxides loaded onγ-Al2O3 for selective catalytic reduction of NO with NH3 at low temperature[J]. Environ Technol, 2012,34(1/4):81-90.  

    14. [14]

      HUANG Zeng-bin, LI Cui-qing, WANG Zhen, XU Sheng-mei, FENG Ling-bo, WANG Hong, SONG Yong-ji, ZHANG Wei. Performance of Mn-Ce catalysts supported on different zeolites in the NH3-SCR of NOx[J]. J Fuel Chem Technol, 2016,44(11):1388-1394. doi: 10.3969/j.issn.0253-2409.2016.11.016

    15. [15]

      ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B:Environ, 2007,76(1):123-134.  

    16. [16]

      AN Zhong-yi, ZHUO Yu-qun, CHEN Chang-he. Influence of calcination temperature on the catalytic activity of Mn/TiO2 for NO oxidation[J]. J Fuel Chem Technol, 2014,42(3):370-377.  

    17. [17]

      ZHANG Zhi-an, YANG Bang-chao, DENG Mei-gen, HU Yong-da, WANG Bin-hua. Synthesis and characterization of nanostructured MnO2 for supercapacitor[J]. Acta Chim Sin(Chin Ed), 2004,62(17):1617-1620. doi: 10.3321/j.issn:0567-7351.2004.17.008

    18. [18]

      DU C H, QIN Y N, HE Y F, SHI X M, MA Z. Preparation and characterization of novel solid acid of sulfated anodized aluminium[J]. J Mol Catal, 2003,17(3):183-187.  

    19. [19]

      HOSSEINPOUR N, MORTAZAVI Y, BAZYARI A, KHODADADI A A. Synergetic effects of Y-zeolite and amorphous silica-alumina as main FCC catalyst components on triisopropylbenzene cracking and coke formation[J]. Fuel Process Technol, 2009,90(2):171-179. doi: 10.1016/j.fuproc.2008.08.013

    20. [20]

      WANG Bin, ZHANG Qiang, HAN Dong-min, LI Chun-yi, YANG Chao-he, SHAN Hong-hong. Effects of acid strength of matrix in catalyst on the yield of small olefins during the catalytic cracking process[J]. Acta Pet Sin(Pet Process Sect), 2016,32(4):666-673. doi: 10.3969/j.issn.1001-8719.2016.04.002

    21. [21]

      MORALES A, AGUDELO M M R D, HERNÁNDEZ F. Adsorption mechanism of phosphorus on alumina[J]. Appl Catal, 1988,41(41):261-271.  

    22. [22]

      ZHANG H, ZOU Y, PENG Y. Influence of sulfation on CeO2-ZrO2 catalysts for NO reduction with NH3[J]. Chin J Catal, 2017,38(1):160-167. doi: 10.1016/S1872-2067(16)62581-0

    23. [23]

      WAN Yi-ling, ZHANG Chuan-hui, GUO Yang-long, GUO Yun, LU Guan-zhong. Catalytic combustion of vinyl chloride emission over CeO2-MnOx catalyst[J]. Chin J Catal, 2012,33(3):557-562.  

    24. [24]

      FAN Yin-ming. Experimental and molecular simulation study on cerium presence in the framework and the surface of Mn/SAPO-34 resistance to SO2 and H2O in NH3-SCR at low temperature[D]. Guangzhou: South China University of Technology, 2017. 

    25. [25]

      JIANG B Q, WU Z B, LIU Y, LEE S C, HO W K. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. J Phys Chem C, 2010,114(11):4961-4965. doi: 10.1021/jp907783g

    26. [26]

      SUN Lu-shi, ZHAO Qing-sen, XIANG Jun, SHI Jin-ming, WANG Le-le, HU Song, SU Sheng. Adsorption of NO and NH3 over CuO/γ-Al2O3 catalyst by DRIFTS[J]. CIESC J, 2009,60(2):444-450. doi: 10.3321/j.issn:0438-1157.2009.02.027

    27. [27]

      XIE Tian. A thesis submitted in partial fulfillment of the requirements for the degree of master in engineering[D]. Wuhan: Huazhong University of Science and Technology, 2011. 

    28. [28]

      QI G, YANG R T. Characterization and FT-IR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J]. J Phys Chem B, 2004,108(40):15738-15747. doi: 10.1021/jp048431h

    29. [29]

      KIJLSTRA W S, BRANDS D S, SMIT H I, POELS E K, BLIEK A. Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 Ⅱ. Reactivity of adsorbed NH3 and NO complexes[J]. J Catal, 1997,171(1):219-230.

    30. [30]

      TOPSOE N Y, TOPSOE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia:Ⅰ. Combined temperature-programmed in-situ FT-IR and on-line Mass-Spectroscopy studies[J]. J Catal, 1995,151(1):226-240. doi: 10.1006/jcat.1995.1024

    31. [31]

      TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by In situ on-line fourier transform infrared spectroscopy[J]. Science, 1994,265(5176):1217-1219. doi: 10.1126/science.265.5176.1217

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    6. [6]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    7. [7]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    8. [8]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    9. [9]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    10. [10]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    11. [11]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    12. [12]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    18. [18]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(10)
  • Abstract views(1160)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return