Citation: Wang Ting, Cai Zhaosheng, Xu Qing. Progress in Preparation and Application of PEGylated Chitosans[J]. Chemistry, ;2020, 83(6): 536-545. shu

Progress in Preparation and Application of PEGylated Chitosans

Figures(9)

  • Polyethylene glycol (PEG) is a non-toxic, lipophilic and hydrophilic compound which characterized with high biocompatibility and non-immunogenicity. Chitosan (CTS) can be transformed into PEGylated chitosan by introducing PEG into its sugar chain. It not only maintains the natural and excellent biodegradability of chitosan, but also has better water solubility and ability to bind organic compounds. The fields concerned with the application of CTS can be expanded through PEGylated modification. On basis of the relevant research traits in the past 20 years, the preparation of PEGylated chitosans and their application in the domains of drug loading and controlled release, tissue engineering, antibacterial materials, bioactive material delivery and environmental protection are summarized, and the future development trend is prospected.
  • 加载中
    1. [1]

      Jin R, Moreira-Teixeira L P, Karperien M, et al. Biomaterials, 2009, 30(13): 2544~2551. 

    2. [2]

      Malhotra M, Tomaro-Duchesneau C, Prakash S. Biomaterials, 2013, 34(4): 1270~1280. 

    3. [3]

      Chen J, Huang L, Lai H, et al. Mol. Pharm., 2014, 11(7): 2213~2223 

    4. [4]

      Poon Y F, Cao Y, Liu Y, et al. ACS Appl. Mater. Interf., 2010, 2(7): 2012~2025. 

    5. [5]

      Casettari L, Vllasaliu D, Castagnino E, et al. Prog. Polym. Sci., 2012, 37(5): 659~685. 

    6. [6]

      Belabassi Y, Moreau J, Gheran V, et al. Biomacromolecules, 2017, 18(9): 2756~2766. 

    7. [7]

      Mao S, Shuai X, Unger F, et al. Biomaterials, 2005, 26(32): 6343~6356. 

    8. [8]

      Yang C, Gao S, Dagnæs-Hansen F, et al. ACS Appl. Mater. Interf., 2017, 9(14): 12203~12216. 

    9. [9]

      Li W, Zhan P, Clercq E D, et al. Prog. Polym. Sci., 2013, 38(3-4): 421~444. 

    10. [10]

      Waheed S, Ahmad A, Khan S M, et al. Desalination, 2014, 351: 59~69. 

    11. [11]

      Kolhe P, Kannan R M. Biomacromolecules, 2003, 4(1): 173~180. 

    12. [12]

      Mishra S K, Raveendran S, Ferreira J M F, et al. Langmuir, 2016, 32(40): 10305~10316. 

    13. [13]

      Gunbas I D, Sezer D U, Gülce-Iz S, et al. Ind. Eng. Chem. Res., 2012, 51(37): 11946~11954. 

    14. [14]

      Harris J M, Struck E C, Case M G, et al. J. Polym. Sci., 1984, 22(2): 341~352.

    15. [15]

    16. [16]

      Xie Y, Qiao H, Su Z, et al. Biomaterials, 2014, 35(27): 7978~7991. 

    17. [17]

      Shutava T G, Livanovich K S, Pankov V V. Colloid. Surf. A, 2018, 539: 69~79. 

    18. [18]

      Ma G, Zhang X, Han J, et al. Int. J. Biol. Macromol., 2009, 45(5): 499~503. 

    19. [19]

      Zhang X, Yang D, Nie J. Int. J. Biol. Macromol., 2008, 43(5): 456~462. 

    20. [20]

      El-Sherbiny I M, Smyth H D C. Carbohyd. Res., 2010, 345(14): 2004~2012. 

    21. [21]

      Bozuyuk U, Dogan N O, Kizilel S. ACS Appl. Mater. Interf., 2018, 10(40): 33945~33955. 

    22. [22]

      Hu Y, Jiang H, Xu C, et al. Carbohyd. Polym., 2005, 61(4): 472~479. 

    23. [23]

      Gorochovceva N, Makuška R. Eur. Polym. J., 2004, 40(4): 685~691. 

    24. [24]

    25. [25]

      Yoksan R, Matsusaki M, Akashi M, et al. Colloid Polym. Sci., 2004, 282(4): 337~342. 

    26. [26]

      Fangkangwanwong J, Akashi M, Kida T, et al. Biopolymers, 2010, 82(6): 580~586.

    27. [27]

      Poon Y F, Cao Y, Liu Y, et al. ACS Appl. Mater. Interf., 2010, 2(7): 2012~2025. 

    28. [28]

      Kiuchi H, Kai W, Inoue Y. J. Appl. Polym. Sci., 2008, 107(6): 3823~3830. 

    29. [29]

      Tanuma H, Saito T, Nishikawa K, et al. Carbohyd. Polym., 2010, 80(1): 260~265. 

    30. [30]

      Kulkarni A R, Hukkeri V I, Sung H W, et al. Macromol. Biosci., 2005, 5(10): 925~928. 

    31. [31]

      Yang X, Zhang Q, Wang Y, et al. Colloid. Surf. B, 2008, 61(2): 125~131. 

    32. [32]

      Pozzo A D, Vanini L, Fagnoni M, et al. Carbohyd. Polym., 2000, 42(2): 201~206. 

    33. [33]

      Dodi G, Hritcu D, Lisa G, et al. Chem. Eng. J., 2012, 203: 130~141. 

    34. [34]

      Hsiao M, Mu Q X, Stephen Z R, et al. ACS Macro Lett., 2015, 4(4), 403~407.

    35. [35]

    36. [36]

    37. [37]

    38. [38]

      Ganguly K, Aminabhavi T M, Kulkarni A R. Ind. Eng. Chem. Res., 2011, 50(21): 11797~11807. 

    39. [39]

    40. [40]

      Liu N, Chen J, Zhang J, et al. Int. J. Biol. Macromol., 2018, 117: 553~558. 

    41. [41]

      Ma G, Yang D, Li Q, et al. Carbohyd. Polym., 2010, 79(3): 620~627. 

    42. [42]

    43. [43]

    44. [44]

      Doulabi A H, Mirzadeh H, Imani M, et al. Carbohyd. Polym., 2013, 92(1): 48~56. 

    45. [45]

      Shariatinia Z. Adv. Colloid Interf. Sci., 2019, 263: 131~194. 

    46. [46]

    47. [47]

      F Zhou, X Jia, Q Yang, et al. Biomater. Sci., 2016, 4(5): 849~856. 

    48. [48]

      Park I K, Kim T H, Park Y H, et al. J. Control. Rel., 2001, 76(3): 349~362. 

    49. [49]

    50. [50]

      Rahmi, Lelifajri, Nurfatimah R. Carbohyd. Polym., 2018, 199: 499~505. 

  • 加载中
    1. [1]

      Yu LiuPengfei LiYize LiuZaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167

    2. [2]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    3. [3]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    4. [4]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    8. [8]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    9. [9]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    10. [10]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    12. [12]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    13. [13]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    14. [14]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    15. [15]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    19. [19]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    20. [20]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

Metrics
  • PDF Downloads(76)
  • Abstract views(5760)
  • HTML views(2035)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return