Citation:
Yu Jingwen, Lv Jia, Cheng Yiyun. Fluorination Significantly Improves the Antibacterial Activity of Carbon Dots[J]. Chemistry,
;2020, 83(4): 360-368.
-
In this study, carbon dots were synthesized by branched polyethyleneimine and ethanol, and the cationic carbon dots were further grafted with fluoroalkane chains to obtain fluorinated carbon dots. They exhibited high antibacterial activity against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and relative low cytotoxicity on mammalian cells. The structure-activity relationship of fluorinated carbon dots showed that fluorination is critical for the high antibacterial activity of carbon dots, and the replacement of fluoroalkane chains with alkane containing the same number of carbon atom significantly reduces the antibacterial activity. This study can provide new insights into the rational design of nanomaterials for antibacterial applications.
-
-
-
[1]
Shankar P R. Med. J. Australa., 2014, 7:237.
-
[2]
Kawaharada Y, Kelly S, Nielsen M W, et al. Nature, 2015, 523:308.
-
[3]
I L Medintz, H T Uyeda, E R Goldman, et al. Nat. Mater., 2005, 4(6):435~446.
-
[4]
Wang J, Soisson S M, Young K, et al. Nature, 2006, 441(7091):358~361.
-
[5]
Jampilek J. Curr. Med. Chem., 2018, 25(38):4972~5006.
-
[6]
Ali Y, Muhamad Bunnori N, Susanti D, et al. Front. Chem., 2018, 6:210.
-
[7]
Santajit S, Indrawattana N. BioMed Res. Int., 2016, 8:2475067.
-
[8]
-
[9]
Hu J, Quan Y, Lai Y, et al. J. Control. Release, 2017, 247:145~152.
-
[10]
Li M, Wang H, Hu J, et al. Chem. Mater., 2019, 31(18):7678~7685.
-
[11]
Cheng X, Li M, Wang H, et al. Chin. Chem. Lett., 2019, doi:10.1016/j.cclet.2019.07.013.
-
[12]
Hu J, Zheng Z, Liu C, et al. Biomater. Sci., 2019, 7(2):581~584.
- [13]
-
[14]
Hu J, Hu Q, He X, et al. Adv. Health. Mater., 2019, doi:10.1002/adhm.201901329.
-
[15]
Vetterli S U, Moehle K, Robinson J A. Bioorg. Med. Chem., 2016, 24(24):6332~6339.
-
[16]
Zimmermann L, Das I, Désiré J, et al. J. Med. Chem., 2016, 59(20):9350~9369.
-
[17]
Chalopin T, Alvarez Dorta D, Sivignon A, et al. Org. Biomol. Chem., 2016, 14(16):3913~3925.
-
[18]
Jung S A, Chapman C A, Ng W L. PLoS Pathogens, 2015, 11(4):e1004837.
-
[19]
Andersson D I, Hughes D, Kubicek-Sutherland J Z. Drug Resist. Update, 2016, 26:43~57.
-
[20]
Garneau-Tsodikova S, Labby K J. Med. Chem. Comm., 2016, 7(1):11~27.
-
[21]
Pelaz B, Alexiou C, Alvarez-Puebla R A, et al. ACS Nano, 2017, 11(3):2313~2381.
-
[22]
Chen G, Roy I, Yang C, et al. Chem. Rev., 2016, 116(5):2826~2885.
-
[23]
Hoseinnejad M, Jafari S M, Katouzian I. Crit. Rev. Microbiol., 2018, 44(2):161~181.
-
[24]
Raghunath A, Perumal E. Int. J. Antimicrob. Agents, 2017, 49(2):137~152.
-
[25]
Wang D, Lin Z, Wang T, et al. J. Hazard. Mater., 2016, 308:328~334.
-
[26]
Soenen S J, Parak W J, Rejman J, et al. Chem. Rev., 2015, 115(5):2109~2135.
-
[27]
Zheng K, Setyawati M I, Leong D T, et al. Chem. Mater., 2018, 30(8):2800~2808.
-
[28]
Zhou Z, Yan Y, Wang L, et al. Biomaterials, 2019, 203:63~72.
-
[29]
Wang C, Wang D, Dai T, et al. Adv. Funct. Mater., 2018, 28(33):1802127.
-
[30]
Namdari P, Negahdari B, Eatemadi A. Biomed. Pharmacother., 2017, 87:209~222.
-
[31]
Peng Z, Han X, Li S, et al. Coord. Chem. Rev., 2017, 343:256~277.
-
[32]
Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015, 11(14):1620~1636.
-
[33]
Lim S Y, Shen W, Gao Z. Chem. Soc. Rev., 2015, 44(1):362~381.
-
[34]
Gaddam R R, Mukherjee S, Punugupati N, et al. Mater. Sci. Eng. C, 2017, 73:643~652.
-
[35]
Cao L, Yang S T, Wang X, et al. Theranostics, 2012, 2(3):295~301.
-
[36]
Dou Q, Fang X, Jiang S, et al. RSC Adv., 2015, 5(58):46817~46822.
-
[37]
Meziani M J, Dong X, Zhu L, et al. ACS Appl. Mater. Interf., 2016, 8(17):10761~10766.
-
[38]
Sun Y P, Zhou B, Lin Y, et al. J. Am. Chem. Soc., 2006, 128(24):7756~7757.
- [39]
-
[40]
Zhong D, Zhuo Y, Feng Y, et al. Biosens. Bioelectron., 2015, 74:546~553.
- [41]
-
[42]
Jian H J, Wu R S, Lin T Y, et al. ACS Nano, 2017, 11(7):6703~6716.
-
[43]
Harroun S G, Lai J Y, Huang C C, et al. ACS Infect. Dis., 2017, 3(11):777~779.
-
[44]
Jiang F, Chen D, Li R, et al. Nanoscale, 2013, 5(3):1137~1142.
-
[45]
Sun H, Gao N, Dong K, et al. ACS Nano, 2014, 8(6):6202~6210.
-
[46]
Ristic B Z, Milenkovic M M, Dakic I R, et al. Biomaterials, 2014, 35(15):4428~4435.
-
[47]
Sattarahmady N, Rezaie-Yazdi M, Tondro G H, et al. J. Photoch. Photobiol. B, 2017, 166:323~332.
- [48]
-
[49]
Sahu S, Behera B, Maiti T K, et al. Chem. Commun., 2012, 48(70):8835~8837.
- [50]
-
[51]
Du F, Zhang M, Li X, et al. Nanotechnology, 2014, 25(31):315702.
-
[52]
Zhang Z, Shen W, Ling J, et al. Nat. Commun., 2018, 9(1):1377.
-
[53]
Shen W, Wang Q, Shen Y, et al. ACS Cent. Sci., 2018, 4(10):1326~1333.
-
[54]
Fox S J, Fazil M, Dhand C, et al. Acta Biomater., 2016, 37:155~164.
-
[55]
Wang M, Liu H, Li L, et al. Nat. Commun., 2014, 5(1):3053.
- [56]
-
[57]
Li L, Song L, Yang X, et al. Biomaterials, 2016, 111:124~137.
-
[58]
Liu H, Wang Y, Wang M, et al. Biomaterials, 2014, 35(20):5407~5413.
- [59]
-
[60]
Wang H, Wang Y, Wang Y, et al. Angew. Chem. Int. Ed., 2015, 54(40):11647~11651.
-
[61]
Wang L H, Wu D C, Xu H X, et al. Angew. Chem. Int. Ed., 2016, 55(2):755~759.
- [62]
-
[63]
Yang J, Zhang Q, Chang H, et al. Chem. Rev., 2015, 115(11):5274~5300.
-
[64]
Kretzmann J A, Ho D, Evans C W, et al. Chem. Sci., 2017, 8(4):2923~2930.
- [65]
- [66]
-
[67]
Liu C, Wan T, Wang H, et al. Sci. Adv., 2019, 5:eaaw8922.
-
[1]
-
-
-
[1]
Wenli FENG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308
-
[2]
Yu Liu , Pengfei Li , Yize Liu , Zaicheng Sun . Recent advances in carbon dots as a single photocatalyst. Acta Physico-Chimica Sinica, 2026, 42(2): 100167-0. doi: 10.1016/j.actphy.2025.100167
-
[3]
Renyi Shao , Khurram Abbas , Vladimir Yu. Osipov , Haimei Zhu , Yuan Li , Usama , Hong Bi . Red-emitting carbon dots prepared from Epipremnum Aureum leaves extract for biological imaging. Acta Physico-Chimica Sinica, 2026, 42(2): 100134-0. doi: 10.1016/j.actphy.2025.100134
-
[4]
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
-
[5]
Zihan Cheng , Kai Jiang , Jun Jiang , Henggang Wang , Hengwei Lin . Achieving thermal-stimulus-responsive dynamic afterglow from carbon dots by singlet-triplet energy gap engineering through covalent fixation. Acta Physico-Chimica Sinica, 2026, 42(2): 100169-0. doi: 10.1016/j.actphy.2025.100169
-
[6]
Xue Wu , Yupeng Liu , Bingzhe Wang , Lingyun Li , Zhenjian Li , Qingcheng Wang , Quansheng Cheng , Guichuan Xing , Songnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109
-
[7]
Chunyuan Kang , Xiaoyu Li , Fan Yang , Bai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156
-
[8]
Tiejin Chen , Xiaokuang Xue , Jian Li , Minhui Cui , Yongliang Hao , Mianqi Xue , Haihua Xiao , Jiechao Ge , Pengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113
-
[9]
Changjie Yin , Boyu Wang , Dantong Qiao , Huimin Li . Polymer Comprehensive Experimental Design: Preparation and Properties of Repeatable Processing Styrene Butadiene Rubber Materials under the “Dual Carbon” Strategy. University Chemistry, 2025, 40(11): 221-232. doi: 10.12461/PKU.DXHX202412046
-
[10]
Rui Xu , Wei Li , Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081
-
[11]
Weijie Yang , Mansheng Chen , Chen Xu , Fujian Xu . Hydroxyl-Rich Polycations: Innovative Materials Empowering Life and Health. University Chemistry, 2025, 40(9): 332-343. doi: 10.12461/PKU.DXHX202410072
-
[12]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[13]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[14]
Jiamin Zhang , Zhen Fan , Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131
-
[15]
Yue WANG , Zhizhi GU , Jingyi DONG , Jie ZHU , Cunguang LIU , Guohan LI , Meichen LU , Jian HAN , Shengnan CAO , Wei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423
-
[16]
Bei Liu , Heng Li , Mei Yang , Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010
-
[17]
Yan Wang , Haolong Li , Chengji Zhao , Zheng Chen , Quan Lin , Yupeng Guo , Jianxin Mu , Kun Liu , Zhong-Yuan Lu , Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083
-
[18]
Xuejun Lai , Anqiang Zhang , Tao Wang , Shuizhu Wu , Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012
-
[19]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[20]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007
-
[1]
Metrics
- PDF Downloads(21)
- Abstract views(1278)
- HTML views(351)
Login In
DownLoad: