Citation: SHI Zhang-ping, QI Xiao-lan, LI Xu-guang, LI Hua-ying, LI Jing-qiu, KONG De-jin, YU Jun. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 483-489. shu

Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation

  • Corresponding author: KONG De-jin, kongdj.sshy@sinopec.com YU Jun, yujun@sit.edu.cn
  • Received Date: 22 November 2019
    Revised Date: 9 March 2020

    Fund Project: the National Natural Science Foundation of China 21808142The project was supported by the National Natural Science Foundation of China (21808142)

Figures(5)

  • SiO2 and La2O3-SiO2 were synthesized via sol-gel method and used as support to prepared Rh-La or Rh doped catalysts by iso-volumic impregnation. Effects of doping mode of La on the catalytic performance of Rh/SiO2 for CO hydrogenation are investigated detailedly. The results reveal that the addition of La can improve the dispersion of Rh and increase Rh+ centers, which can effectively inhibit the formation of CO2 and improve the selectivity of oxygenates. Furthermore, the doping mode of La can affect the interaction between La and Rh. A strong La-Rh interaction is achieved over the 2Rh-5La2O3/SiO2 catalyst prepared by co-impregnation of Rh and La with SiO2 support. The strong interaction between La and Rh can efficiently weaken the Rh-CO bonds and enhance the CO insertion reaction in the reaction process, which makes the product dominated by C2+ oxygenates. The 2Rh/5La2O3-SiO2 catalyst prepared via La2O3-SiO2 composite support exhibits a weak La-Rh interaction, and methanol, ethanol and other low-carbon alcohols are obtained as the main products.
  • 加载中
    1. [1]

      LU Shi-wei. C1 Chemistry-Chemistry for the future[M]. Beijing:China aerospace publishing house, 1990:1-10

    2. [2]

      SPIVEY J J, EGBEBI A. Heterogeneous catalytic synthesis of ethanol from biomass- derived syngas[J]. Chem Soc Rev, 2007,36(9):1514-1528. doi: 10.1039/b414039g

    3. [3]

      AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8(8):7025-7050. doi: 10.1021/acscatal.8b01391

    4. [4]

      ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. New horizon in C1 chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev, 2019,48(12):3193-3228. doi: 10.1039/C8CS00502H

    5. [5]

      WAINAINA S, HORVÁTH I S, TAHERZADEH M J. Biochemicals from food waste and recalcitrant biomass via syngas fermentation:A review[J]. Bioresour Technol, 2018,248:113-121.  

    6. [6]

      LIU Y J, ZUO Z J, LI C, DENG X, HUANG W. Effect of preparation method on CuZnAl catalysts for ethanol synthesis from syngas[J]. Appl Surf Sci, 2015,356:124-127. doi: 10.1016/j.apsusc.2015.08.039

    7. [7]

      AN Z, NING X, HE J. Ga-promoted CO insertion and C-C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas[J]. J Catal, 2017,356:157-164. doi: 10.1016/j.jcat.2017.09.020

    8. [8]

      LI H, ZHANG W, WANG Y, SHUI M, SUN S, BAO J, GAO C. Nanosheet-structured K-Co-MoS2 catalyst for the higher alcohol synthesis from syngas:Synthesis and activation[J]. J Energy Chem, 2019,30:57-62. doi: 10.1016/j.jechem.2018.03.019

    9. [9]

      XU D, ZHANG H, MA H, QIAN W, YING W. Effect of Ce promoter on Rh-Fe/TiO2 catalysts for ethanol synthesis from syngas[J]. Catal Commun, 2017,98:90-93. doi: 10.1016/j.catcom.2017.03.019

    10. [10]

      LAN G, YAO Y, ZHANG X, GUO M, TANG H, LI Y, YANG Q. Improved catalytic performance of encapsulated Ru nanowires for aqueous-phase Fischer-Tropsch synthesis[J]. Catal Sci Technol, 2016,6(7):2181-2187. doi: 10.1039/C5CY01027F

    11. [11]

      HAN L, MAO D, YU J, GUO Q, LU G. C2-oxygenates synthesis through CO hydrogenation on SiO2-ZrO2 supported Rh-based catalyst:The effect of support[J]. Appl Catal A:Gen, 2013,454:81-87. doi: 10.1016/j.apcata.2013.01.008

    12. [12]

      ZHANG R, DUAN T, WANG B, LING L. Unraveling the role of support surface hydroxyls and its effect on the selectivity of C2 species over Rh/γ-Al2O3 catalyst in syngas conversion:A theoretical study[J]. Appl Surf Sci, 2016,379:384-394. doi: 10.1016/j.apsusc.2016.04.106

    13. [13]

      ZHANG R, PENG M, WANG B. Catalytic selectivity of Rh/TiO2 catalyst in syngas conversion to ethanol:Probing into the mechanism and functions of TiO2 support and promoter[J]. Catal Sci Technol, 2017,7(5):1073-1085. doi: 10.1039/C6CY02350A

    14. [14]

      ZHANG L, BALL M R, LIU Y, KUECH T F, HUBER G W, MAVRIKAKIS M, DUMESIC J A. Synthesis gas conversion over Rh/Mo catalysts prepared by atomic layer deposition[J]. ACS Catal, 2019,9(3):1810-1819. doi: 10.1021/acscatal.8b04649

    15. [15]

      YIN H, DING Y, LUO H, ZHU H, HE D, XIONG J, LIN L. Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation[J]. Appl Catal A:Gen, 2003,243(1):155-164. doi: 10.1016/S0926-860X(02)00560-4

    16. [16]

      YANG N, YOO J S, SCHUMANN J, BOTHRA P, SINGH J A, VALLE E, BENT S F. Rh-MnO interface sites formed by atomic layer deposition promote syngas conversion to higher oxygenates[J]. ACS Catal, 2017,7(9):5746-5757. doi: 10.1021/acscatal.7b01851

    17. [17]

      PONEC V. Chapter 4 selectivity in the syngas reactions:The role of supports and promoters in the activation of Co and in the stabilization of intermediates[J]. Stud Surf Sci Catal, 1991,64:117-157. doi: 10.1016/S0167-2991(08)60946-5

    18. [18]

      OJEDA M, GRANADOS M L, ROJAS S, TERREROS P, GARCÍA-GARCÍA F J, FIERRO J L G. Manganese-promoted Rh/Al2O3 for C2-oxygenates synthesis from syngas effect of manganese loading[J]. Appl Catal A:Gen, 2004,261(1):47-55. doi: 10.1016/j.apcata.2003.10.033

    19. [19]

      MO X, GAO J, GOODWIN Jr J G. Role of promoters on Rh/SiO2 in CO hydrogenation:A comparison using DRIFTS[J]. Catal Today, 2009,147(1):139-149.  

    20. [20]

      MO X, GAO J, UMNAJKASEAM N, GOODWIN Jr J G. La, V, and Fe promotion of Rh/SiO2 for CO hydrogenation:Effect on adsorption and reaction[J]. J Catal, 2009,267(1):167-176.

    21. [21]

      BURCH R, PETCH M I. Investigation of the synthesis of oxygenates from carbon monoxide/hydrogen mixtures on the supported rhodium catalysts[J]. Appl Catal A:Gen, 1992,88(1):39-60. doi: 10.1016/0926-860X(92)80195-I

    22. [22]

      GOGATE M R, DAVIS R J. X-ray absorption spectroscopy of an Fe-promoted Rh/TiO2 catalyst for synthesis of ethanol from synthesis gas[J]. ChemCatChem, 2009,1(2):295-303. doi: 10.1002/cctc.200900104

    23. [23]

      LEDFORD J S, HOUALLA M, PROCTOR A, HERCULES D M, PETRAKIS L. Influence of lanthanum on the surface structure and carbon monoxide hydrogenation activity of supported cobalt catalysts[J]. J Phys Chem, 1989,93(18):6770-6777. doi: 10.1021/j100355a039

    24. [24]

      HANAOKA T, ARAKAWA H, MATSUZAKI T, SUGI Y, KANNO K, ABE Y. Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts[J]. Catal Today, 2000,58(4):271-280.  

    25. [25]

      ARAKAWA H, TAKEUCHI K, MATSUZAKI T. Effect of metal dispersion on the activity and selectivity of Rh/SiO2 catalyst for high pressure CO hydrogenation[J]. Chem Lett, 1984,13:1607-1610. doi: 10.1246/cl.1984.1607

    26. [26]

      GARCÍA-FERNÁNDEZ S, GANDARIAS I, REQUIES J, GVEMEZ M B, BENNICI S, AUROUX A, ARIAS P L. New approaches to the Pt/WOx/Al2O3 catalytic system behavior for the selective glycerol hydrogenolysis to 1, 3-propanediol[J]. J Catal, 2015,323:65-75. doi: 10.1016/j.jcat.2014.12.028

    27. [27]

      GARCÍA-FERNÁNDEZ S, GANDARIAS I, TEJIDO-N'UÑEZ Y, REQUIES J, ARIAS P L. Influence of the support of bimetallic platinum tungstate catalysts on 1, 3-propanediol formation from glycerol[J]. ChemCatChem, 2017,9(24):4508-4519. doi: 10.1002/cctc.201701067

    28. [28]

      GUO S L, ARAI M, NISHIYAMA Y. Activation of a silica-supported nickel catalyst through surface modification of the support[J]. Appl Catal, 1990,65(1):31-44. doi: 10.1016/S0166-9834(00)81586-9

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    12. [12]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(8)
  • Abstract views(898)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return