Citation: HE Xi-wang, XIAO Yong, JIA Li-tao, LI De-bao, HOU Bo, WANG Jun-gang. Effects of phosphating process of MoP catalyst on hydrogenation of acetic acid to ethanol[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 323-328. shu

Effects of phosphating process of MoP catalyst on hydrogenation of acetic acid to ethanol

Figures(7)

  • A series of molybdenum phosphide (MoP) catalysts for the hydrogenation of acetic acid to ethanol were successfully synthesized and identified by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM). The results reveal that MoP2O7 and MoO2 exist on the catalyst surface together with MoP. MoP or the synergistic effects of MoP2O7 and MoO2 species play roles in hydrogenation of acetic acid to ethanol. Phosphating temperature significantly affects the formation and dispersion of phosphide. A low phosphating temperature is not sufficient for the formation of MoP, but a high phosphating temperature leads to the agglomeration of MoP. The catalyst reduced at 650℃ has the highest hydrogenation activity and its P/Mo molar ratio is 1.0.
  • 加载中
    1. [1]

      ZHOU M C, ZHANG H T, MA H F, YING W Y. The catalytic properties of K modified PtSn/Al2O3 catalyst for acetic acid hydrogenation to ethanol[J]. Fuel, 2016,144(1):115-123.  

    2. [2]

      ONYESTYAK G. Ni/silica based bimetallic catalysts by solid-state co-reduction of admixed metal oxides for acetic acid hydroconversion to ethanol[J]. Res Chem Intermed, 2007,38(2):1-4.  

    3. [3]

      XIE Jian-guo, WANG An-jie, LI Xiang, HU Yong-kang. Preparation of MCM-41 supported molybdenum phosphide hydrodesulfurization catalyst[J]. Petro Process Petrochem, 2009,5(4):496-502.  

    4. [4]

      PEYMAN F, LIU J. Impact of volatile fatty acid recovery on economics of ethanol production from brown algae via mixed alcohol synthesis[J]. Chem Eng Res Des, 2015,98(1):107-122.  

    5. [5]

      LI Feng-yan, LI Qing-jie, ZHAO Tian-bo, SUN Gui-da, LI Cui-qing. Characteristic of quinoline hydrodenitrogenation and dibenzothiophene hydrodesulfurization over molubdenum phosphide catalysts[J]. J Petrochem Univ, 2006,19(2):001-004.  

    6. [6]

      ZHANG S B, DUAN X P, YE L M, LIN H Q, XIE Z X, YUAN Y Z. Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt-Sn nanoparticles[J]. Catal Today, 2013,215(1):260-266.  

    7. [7]

      CLARK P, WANG X, OYANA S T. Characterization of silica supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy[J]. J Catal, 2002,207(1):256-265.  

    8. [8]

      YAN Jing-sen, WANG An-jie, LI Xiang, LU Mo-hong, HU Yong-kang. Hydrodenitrogenation of quinolone catalyzed by SiO2-supported molybdenum phosphide[J]. Acta Pet Sin (Pet Process Set), 2006,22(3):28-32.  

    9. [9]

      FENG Z C, LIANG C H, WU W C, WU Z L, SANTENE R A V, LI C. Carbon monoxide adsorption on molybdenum phosphides:Fourier transform infrared spectroscopic and density functional theory studies[J]. Phys Chem, 2003,107(1):13698-13702.  

    10. [10]

      LIN Yin-chun, LI Xian-cai, YANG Ai-jun, GUO Hui-rui. Effect of preparation condition to molybdenum phosphide catalysts for CO2 reforming of CH4[J]. J Nanchang Univ, 2012,34(4):312-315.  

    11. [11]

      OYAMA S T, CLARK P, LEDEN E J, REQUEJO F G. XAFS characterization of highly active alumina-supported molybdenum phosphide catalysts (MoP/Al2O3) for hydrotreating[J]. Phys Chem, 2001,105(1):4961-4966.  

    12. [12]

      QU Ben-lian, CHAI Yong-ming, XIANG Chun-e, ZHANG Jing-cheng, LIU Chen-guang. In-situ XRD study of nickel phosphide and molybdenum phosphide catalysts[J]. Acta Pet Sin (Pet Process Set), 2009,25(4):496-502.  

    13. [13]

      PEREZ-ROMO P, POTVIN C, MANOLI J M, CHEHIMI M, EGA-MARIADASSOU G D. Phosphorus-doped molybdenum oxynitrides and oxygen-modified molybdenum carbides:Synthesis, characterization and determination of turnoverrates for propene hydrogenation[J]. J Catal, 2002,208(1):187-196. doi: 10.1006/jcat.2002.3564

    14. [14]

      STINNER C, PRINS R, WEBER T. Formation, structure, and HDN activity of unsupported molybdenum phosphide[J]. J Catal, 2000,191(2):438-444. doi: 10.1006/jcat.1999.2808

    15. [15]

      ITO Y, KAWAMOTO H, SAKA S. Efficient and selective hydrogenation of aqueous acetic acid on Ru-Sn/TiO2 for bioethanol production from lignocellulosics[J]. Fuel, 2016,178(1):118-123.  

    16. [16]

      CLARK P A, OYAMA S T. Alumina-supported molybdenum phosphide hydroprocessing catalysts[J]. J Catal, 2003,218(1):78-87. doi: 10.1016/S0021-9517(03)00086-1

    17. [17]

      CHENG R H, SHU Y Y, LI L, SUN J, WANG X D, ZHANG T. CO adsorption on highly dispersed MoP/Al2O3 prepared with citric acid[J]. Thermochim Acta, 2006,450(1):42-46.  

    18. [18]

      OMYESTYA'K G, HARNOS S, BADARI C A, KLE'BERT S, ASZONYI A, VALYON J. Hydroconversion of acetic acid over indiumand phosphorus modified nickel/laponite catalysts[J]. React Kinet Mech Catal, 2015,115(1):201-216. doi: 10.1007/s11144-014-0825-9

    19. [19]

      ZHOU Gui-lin, WANG Pu-guang, JIANG Zong-xuan, YING Pin-liang, LI Can. Selective hydrogenation of acetylene over a MoP catalyst[J]. Chin J Catal, 2011,32(1):27-30.  

    20. [20]

      GONG Shu-wen, ZHANG Da, XING Sheng-kai, LIU Li-jun, LI Kao-zhen, CUI Qing-xin. Influence of the synthesis on HDS activity of molybdenum phosphide catalysts[J]. J Fuel Chem Technol, 2009,37(4):464-467.  

    21. [21]

      MONTESINOS-CACELLANOS A, ZEPEDA T A, PAWELEC B, FIERRO L J, REYES J A. Preparation, characterization cerformance of alumina supported nanostructured Mo-phosphide systems[J]. Chem Mater, 2007,19(1):5627-5636.  

    22. [22]

      GUO Q H, REN L L. Hydrodechlorination of trichloroethylene over MoP/-Al2O3 catalystwith high surface area[J]. Catal Today, 2016,264(1):158-162.

    23. [23]

      YAO Z W, TONG J, QIAO X, JIANG J, ZHAO Y, LIU D M, ZHANG Y C, WANG H Y. Novel synthesis of dispersed molybdenum and nickel phosphides from thermal carbonization of metal and phosphorus-containing resins[J]. Dalton Trans, 2015,44(2):19383-19391.  

    24. [24]

      PHILLIPS D C, SAWHILL S J, SELF R. Synthesis, characterization and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts[J]. J Catal, 2002,207(1):266-273.  

  • 加载中
    1. [1]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    2. [2]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    3. [3]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    11. [11]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(1)
  • Abstract views(703)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return